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A FUNCTION CONTAINING ALL LAGRANGE NUMBERS

LESS THAN THREE

DoYong Kwon

Abstract. Given a real number α, the Lagrange number of α is the

supremum of all real numbers L > 0 for which the inequality |α− p/q| <
(Lq2)−1 holds for infinitely many rational numbers p/q. All Lagrange
numbers less than 3 can be arranged as a set {lp/q : p/q ∈ Q ∩ [0, 1]}
using the Farey index. The present paper considers a function C(α)

devised from Sturmian words. We demonstrate that the function C(α)

contains all information on Lagrange numbers less than 3. More precisely,
we prove that for any real number α ∈ (0, 1], the value C(α) − C(0) is

equal to the sum of all numbers 3− lp/q where the Farey index p/q is less

than α.

1. Introduction

For a real number α ∈ R, the Lagrange number L(α) of α is defined by the
supremum of all real numbers L > 0 for which the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

Lq2

holds for infinitely many rational numbers p/q ∈ Q.
Lagrange numbers less than 3 are particularly distinguished in view of Dio-

phantine approximations. Let

L =

{
√

5,
√

8,

√
221

5
,

√
1517

13
, . . .

}
be the set of Lagrange numbers less than 3. Markov showed in [14, 15] that
L is a discrete set, and that each element in L characterizes some badly ap-
proximable real numbers. He also recognized that L has intimate connections
to minimal values of indefinite quadratic forms on the integer lattice and a
Diophantine equation

x2 + y2 + z2 = 3xyz

which is now called the Markov equation.
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Figure 1. Markov tree(
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Figure 2. Farey tree

Markov numbers are positive integers that appear in the solution triples
(x, y, z) ∈ Z3 to the Markov equation. This triple (x, y, z) is termed the Markov
triple, and we put

M = {1, 2, 5, 13, 29, . . .}
to be the set of Markov numbers. Except for the singular triples (1, 1, 1) and
(1, 1, 2), all the other nonsingular Markov triples have three different entries.
The nonsingular triples are well arranged via a binary tree, called the Markov
tree. Figure 1 depicts the first three rows of the tree. Here, the maximum
entry is underlined and placed in the middle. The Markov tree is reminiscent
of the Farey tree. See Figure 2. Children in both trees are born according to
the recursive rules Figure 3 describes.

(x, z, y)

(x, 3xz − y, z) (z, 3zy − x, y)

(ab ,
a+c
b+d ,

c
d )

(ab ,
2a+c
2b+d ,

a+c
b+d ) (a+cb+d ,

a+2c
b+2d ,

c
d )

Figure 3. Generating rules of the Markov tree (left) and the
Farey tree (right)

It is known that every Markov number appears in the Markov tree just
as every rational number in [0, 1] does in the Farey tree. ([2, Chapter 3]).
Moreover, every rational number in (0, 1) appears as an underlined entry in
the Farey tree once and exactly once. Hence, Q[0,1] is a well-defined index set
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for M — here and in what follows, if S is a set and I is an interval then SI
means S ∩ I. To be more precise, let t ∈ Q[0,1]. Then we write mt for the
Markov number m so that the place of m in the Markov tree coincides with
the corresponding place where t occupies in the Farey tree. We say that t is
the Farey index of mt. For instance, m0 = 1, m1 = 2, m1/2 = 5, m1/3 = 13,
m2/3 = 29, etc. Frobenius’ uniqueness conjecture on Markov numbers claims
that the underlined entries in the Markov tree are all distinct [4]. Meanwhile,
we have no general criterion on two distinct rational numbers p/q, r/s ∈ Q[0,1]

to determine which of mp/q and mr/s is greater than the other. Recently,
however, remarkable partial results were obtained in [12, 11, 5].

Under the same index set with Markov numbers, Lagrange numbers less
than 3 can be also arranged as L = {lp/q : p/q ∈ Q[0,1]}. Along this line,
Markov [14, 15] proved that

(1) lp/q =

√
9− 4

m2
p/q

.

So, the uniqueness conjecture is equivalent to the statement that the values
lp/q are all distinct.

Since the introduction, Markov and Lagrange numbers have been enjoying
fertile and prolific connections to diverse area of mathematics, such as quadratic
forms, Diophantine approximations, combinatorics, and hyperbolic geometry.
For further details, the readers are nicely guided by [3, 2, 17].

We consider a function C(α) devised from Sturmian words, in fact, more
generally from mechanical words. Closely speaking, continued fractions whose
partial quotients constitute modified mechanical words are analyzed. Actually,
a function similar to C(α) was also considered by the author. To be more
concrete, let us denote the continued fraction expansion of a real number t by

t = [a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2 + · · ·

,

where the partial quotients ai for i ≥ 1 are positive integers, while a0 ∈ Z.
Let a1a2 · · · be a mechanical word of slope α over an alphabet {1, 2}. In [8], a
continued fraction of the form [0, a1, a2, a3, . . .] was studied. By contrast, the
work of Markov leads the present paper to examine a continued fraction of the
form [a1, a1, a2, a2, a3, a3, . . .].

The primary objective of the paper is to reveal the overall connection be-
tween C(α) and Lagrange numbers. After combinatorial and analytical inves-
tigation, we specify that the function C(α) contains accumulated information
on Lagrange numbers, and thus Markov numbers by (1). Finally, we are led to
prove that for any real number α ∈ [0, 1], the following identity holds:

C(α+)− C(0) =
∑

p/q∈Q[0,α]

(3− lp/q),
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where C(α+) means the right limit of C at α. Namely, each Lagrange number
exists not in its own right, but in harmony with the whole Lagrange numbers.
This generalizes the work in [6], where the authors proved the above identity
of the case α = 1. But the ones of the other cases 0 < α < 1 seem not
simple to be proved in their context. They rearranged in increasing order the
elements of the set L = {lp/q : p/q ∈ Q[0,1]} as L1 � L2 � L3 � · · · , which

consequently implies C(1+)−C(0) ≥
∑∞
n=1(3− Ln) with equality if and only

if all lp/q are distinct, and declared that the uniqueness conjecture is equivalent

to the identity C(1+) − C(0) =
∑∞
n=1(3 − Ln). We will see below that the

number 3 − lp/q is realized as a discontinuous jump of C(α) at each rational
p/q ∈ Q[0,1]. Thus we can say now that the uniqueness conjecture is equivalent
to the statement that the discontinuous jumps of C(α) are all distinct.

2. Sturmian words and continued fractions

This section begins with some review of combinatorics on words, particularly
focused on Sturmian and Christoffel words. Lothaire’s book [13] will be a good
substitute.

Let b·c (resp. d·e) be the floor (resp. ceiling) function. Throughout the
paper, A is a finite alphabet. Let A∗ be the set of finite words over A, while
AN the set of (right) infinite words. For a nonempty word w ∈ A∗, we mean by
w∞ the infinitely concatenated word www · · · . If w = a1a2 · · · an ∈ A∗, then
w̃ denotes anan−1 · · · a1, i.e., the reversal of w. A word w satisfying w̃ = w is
termed a palindrome.

Given real numbers α, ρ ∈ [0, 1], we define two infinite words sα,ρ, s
′
α,ρ over

the alphabet A = {a, b} as follows. For n ≥ 0, their n’th letters sα,ρ(n) and
s′α,ρ(n) are given by

sα,ρ(n) :=

{
a, if bα(n+ 1) + ρc − bαn+ ρc = 0,

b, if bα(n+ 1) + ρc − bαn+ ρc = 1,

s′α,ρ(n) :=

{
a, if dα(n+ 1) + ρe − dαn+ ρe = 0,

b, if dα(n+ 1) + ρe − dαn+ ρe = 1.

Here, the infinite words sα,ρ and s′α,ρ are called lower and upper mechanical
words with slope α and intercept ρ, respectively. One observes that sα,ρ and
s′α,ρ are aperiodic if and only if α is irrational. On the other hand, a rational
α forces both sα,ρ and s′α,ρ to be purely periodic. Mechanical words with
irrational slopes are called Sturmian words [16].

We restrict ourselves to mechanical words with zero intercept (ρ = 0), and
so also write sα := sα,0 and s′α := s′α,0 for convenience of typography. If α is
irrational, then only the first letters of sα and s′α are different, and a common
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infinite suffix cα, called the characteristic word of slope α, follows:

sα = acα, s′α = bcα.

On the other hand, if α = p/q with gcd(p, q) = 1, then sα and s′α have their
shortest periodic words respectively as

sα = (azp,qb)
∞, s′α = (bzp,qa)∞,

where the common factor zp,q is a palindrome called the central word. If α is
equal to 0 or 1, then both azp,qb and bzp,qa should read a when α = 0, and
b when α = 1. We say that azp,qb (resp. bzp,qa) is a lower (resp. an upper)
Christoffel word of slope p/q. Note here that our slopes of Christoffel words
are different from those of [3, 17, 11]. We adopt the current slopes to make the
slopes of Christoffel words coherent with the ones of Sturmian words.

Lemma 2.1. Let p/q ∈ Q[0,1) be a rational number. Then the right limit

lim
α→(p/q)+

s′α = b(zp,qba)∞

exists in the sense that s′α and b(zp,qba)∞ have arbitrarily long common prefixes
as α approaches p/q from the right.

Proof. See Lemma 2.3 of [9].

Remark 2.2. When p/q = 0, the infinite word b(zp,qba)∞ is understood as
ba∞ by convention.

If a0a1a2 · · · is a finite or infinite word over the positive integers, then
we also write [a0a1a2 · · · ] for the continued fraction [a0, a1, a2, . . .]. The i’th
convergent of [a0a1a2 · · · ] is the rational number pi/qi := [a0a1 · · · ai], whereas
the i’th complete quotient is ζi := [aiai+1ai+2 · · · ]. The values of continued
fractions are ordered according to the alternating lexicographic order.

Over A = {a, b}, define χ(a) := 11, χ(b) := 22, and extend χ to A∗ ∪ AN

so that it is a morphism. For any finite or infinite word u ∈ A∗ ∪ AN, let us
denote the continued fraction [χ(u)] by

JuK := [χ(u)].

Using this double bracket J·K, all elements in L andM can be neatly represented
by the mechanical words as demonstrated in Theorem 8.2.1 and Theorem 10.3.5
of [17].

Proposition 2.3. For p/q ∈ Q[0,1],

lp/q = Js′p/qK +
1

Jsp/qK
,

and mp/q is equal to the denominator of the finite continued fraction Jbzp,qaK.



6 DoYong Kwon

Figure 4. Graph of C(α)

We are now able to define a function C : [0, 1]→ R by

C(α) := Js′αK.

Accordingly, one has, e.g., C(0) = [1∞] = 1+
√
5

2 , C(1) = [2∞] = 1 +
√

2, and

C(1/2) = Js′1/2K = [(2211)∞] =
9 +
√

221

10
.

Given an order on {a, b} by a < b, one notes that s′α < s′β lexicographically
whenever 0 ≤ α < β ≤ 1. Hence, the alternating lexicographic order of contin-
ued fractions guarantees that C is strictly increasing. The basic properties of
C are summarized in the next lemma. A similar argument to that of [8] also
works well in the proof of this lemma.

Lemma 2.4. The function C fulfills the following.

(a) C is strictly increasing.
(b) C is continuous at every irrational number.
(c) At every rational number, C is left-continuous but not right-continuous.

(d) For any rational p/q ∈ Q[0,1),

C(p/q+) := lim
α→(p/q)+

C(α) = Jb(zp,qba)∞K.

Figure 4 portrays the graph of C(α). It might look like a step function. The
reason for this appearance is that the discontinuous jumps C(p/q+)−C(p/q) at
rational numbers p/q ∈ Q[0,1) decay very quickly as q increases. More precisely,
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the value C(p/q+)−C(p/q) is less than 10/σ4q, where σ = 1+
√
5

2 . See Theorem
3.6 below.

3. Lagrange numbers and C(α)

This section reveals that the function C(α) intrinsically contains all informa-
tion on Lagrange numbers. We begin with a simple but influential observation.

Lemma 3.1. For any real number c > 0, we have

[2, 2, c] + [0, 1, 1, c] = 3.

Proof. This lemma reflects the abuse of notation for the following meaning:

[2, 2, c] + [0, 1, 1, c] = 2 +
1

2 +
1

c

+
1

1 +
1

1 +
1

c

= 3.

For any Lagrange number lp/q, the next theorem declares that the number
3− lp/q is nothing but the discontinuous jump of the function C(α) at α = p/q.

Theorem 3.2. Let p/q ∈ Q[0,1) be a rational number. Then

3− lp/q = Jb(zp,qba)∞K− J(bzp,qa)∞K = C(p/q+)− C(p/q).

Proof. Plugging c = J(zp,qba)∞K, Lemma 3.1 implies

3 = Jb(zp,qba)∞K +
1

J(azp,qb)∞K
,

while

lp/q = J(bzp,qa)∞K +
1

J(azp,qb)∞K
,

by Proposition 2.3.

The Fibonacci sequence {Fn}n≥−1 defined by

F−1 = 0, F0 = 1, and Fn+1 = Fn + Fn−1 for n ≥ 0

obeys, for any integer n ≥ 0,

Fn =
σn+1 − σn+1

√
5

, where σ =
1 +
√

5

2
and σ =

1−
√

5

2
.

We are now in a position to state our main theorem. Figure 4 makes us
suspect that all increases of the function C(α) are caused only by discontinu-
ous jumps at rational numbers. This is indeed the case as the next theorem
describes. From now on, we coherently use lower case for the convergents pk/qk
of α, while upper case for the convergents Pk/Qk of C(α).
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Theorem 3.3. For any real number α ∈ (0, 1], we have

C(α)− C(0) =
∑

r/s∈Q[0,α)

(3− lr/s),

where the summation runs over all reduced rational numbers r/s in Q[0,α).

Proof. Since C(α) is strictly increasing, we prove only the case of α = 1.
At first, Theorem 3.2 guarantees that

C(1)− C(0) ≥
∑

r/s∈Q[0,1)

(3− lr/s).

Let ε > 0 be any positive real number. Given a rational number r/s ∈ Q[0,1),
we define an open interval Ir/s by

Ir/s :=
(
C(r/s)− ε

2s3
, C(r/s+) +

ε

2s3

)
=
{
t ∈ R : J(bzr,sa)∞K− ε

2s3
< t < Jb(zr,sba)∞K +

ε

2s3

}
.

We claim that the collection {Ir/s : r/s ∈ Q[0,1)} is an open cover of the interval

(C(0), C(1)) =
(

1+
√
5

2 , 1 +
√

2
)

. Suppose β ∈ (C(0), C(1)). If β belongs to a

closed interval [C(r/s), C(r/s+)] for some r/s ∈ Q[0,1), then we are done.
Thus, we assume β = C(α0) for some irrational number α0 ∈ (0, 1). Let
pk/qk be the k’th convergent of α0, and Pk/Qk the k’th convergent of C(α0).
Because of convergents’ best approximation property [7], both s′α0

and s′pk/qk
have a common prefix of length at least qk− 1, which makes the corresponding
convergents of C(α0) and C(pk/qk) coincide. Consequently, one derives

|C(α0)− C(pk/qk)| =
∣∣∣∣(C(α0)− P2qk−3

Q2qk−3

)
−
(
C(pk/qk)− P2qk−3

Q2qk−3

)∣∣∣∣
<

1

Q2qk−3Q2qk−2
<

1

(Q2qk−3)2

<
1

(F2qk−3)2
=

5

(σ2qk−2 − σ2qk−2)2
.

The value |C(α0) − C(pk/qk)| is eventually less than ε
2q3k

as k increases, and

therefore β = C(α0) lies in the interval Ipk/qk .

Owing to Theorem 3.2, the length |Ir/s| of the interval Ir/s is given by

|Ir/s| = 3− lr/s +
ε

s3
.
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Since {Ir/s : r/s ∈ Q[0,1)} is an open cover of (C(0), C(1)), one has

C(1)− C(0) <
∑

r/s∈Q[0,1)

|Ir/s| =
∑

r/s∈Q[0,1)

(
3− lr/s +

ε

s3

)
=

∑
r/s∈Q[0,1)

(3− lr/s) +
∑

r/s∈Q[0,1)

ε

s3

=
∑

r/s∈Q[0,1)

(3− lr/s) +

∞∑
s=1

εϕ(s)

s3

<
∑

r/s∈Q[0,1)

(3− lr/s) +

∞∑
s=1

ε

s2
=

∑
r/s∈Q[0,1)

(3− lr/s) +
π2

6
ε,

where ϕ is the Euler totient function. Since ε is arbitrary, we conclude

C(1)− C(0) =
∑

r/s∈Q[0,1)

(3− lr/s).

A special case α = 1 of the theorem implies the result in [6], where its proof
appealed to hyperbolic geometry.

Corollary 3.4. For any real number α ∈ [0, 1], we have

C(α+)− C(0) =
∑

r/s∈Q[0,α]

(3− lr/s).

In particular, the sum of 3− lp/q for all p/q ∈ Q[0,1] is given by∑
p/q∈Q[0,1]

(3− lp/q) =
7− 2

√
2−
√

5

2
.

Proof. Since C is continuous at irrational numbers by Lemma 2.4, the case
of irrational α boils down to Theorem 3.3.

Let α = p/q ∈ Q[0,1] be a rational number. One notes that

C(p/q+)− C(0) = C(p/q)− C(0) + C(p/q+)− C(p/q)

=
∑

r/s∈Q[0,p/q)

(3− lr/s) + 3− lp/q =
∑

r/s∈Q[0,p/q]

(3− lr/s),

which is followed by∑
p/q∈Q[0,1]

(3− lp/q) = 3− l1 +
∑

p/q∈Q[0,1)

(3− lp/q)

= 3− l1 + C(1)− C(0) =
7− 2

√
2−
√

5

2
.
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The following are also immediate consequences of the theorem. For any
real number α ∈ (0, 1] and a positive integer n, let us denote by ϕα(n) the
number of positive integers m for which gcd(m,n) = 1 and 0 < m/n < α. This
nonnegative integer ϕα(n) was called the fractional totient function in [10].

Corollary 3.5. (a) The sum
∑
p/q∈Q[0,α)

(3 − lp/q) is a transcendental

number if and only if α ∈ (0, 1) is an irrational number.
(b) For any real number α ∈ (0, 1],

∑
p/q∈Q[0,α)

q≤x

lp/q =
9αx2

π2
+O(x log x).

Proof. (a) In the formula

∑
p/q∈Q[0,α)

(3− lp/q) = Js′αK− 1 +
√

5

2
,

the sequence of partial quotients of Js′αK is so called quasi-Sturmian. A real
number whose partial quotients form a quasi-Sturmian sequence is known to
be transcendental [1].

(b) From ∑
p/q∈Q[0,α)

q≤x

(3− lp/q) = O(1),

it follows that ∑
p/q∈Q[0,α)

q≤x

lp/q = 3
∑
q≤x

ϕα(q) +O(1).

Now [10, Theorem 2.2] applies.

By computations, (b) of Corollary 3.5 is verified.

Example 1. Let

S(α, x) :=
π2

9αx2
×

∑
p/q∈Q[0,α)

q≤x

lp/q, E(α, x) :=
π2 log x

9αx
,

and N(α, x) be the number of Lagrange numbers involved in the above sum.
The computation produces the following table.
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α S(α, 1000) E(α, 1000) N(α, 1000)

1/3 1.000775 0.022726 101400

1/2 1.000750 0.015150 152096

1 1.000751 0.007575 304192

Next, we turn to the converging rate of the series in Theorem 3.3. Our
series is independent of rearrangement, so we can safely consider its truncation
in the form of

C(α)− C(0)−
∑

p/q∈Q[0,α)
q≤n

(3− lp/q) =
∑

p/q∈Q[0,α)
q>n

(3− lp/q).

Theorem 3.6. Let α ∈ (0, 1] be a real number. Then, for any integer
n ≥ 7, ∑

p/q∈Q[0,α)
q>n

(3− lp/q) <
2αn

σ4n
.

Proof. Recalling that 3 − lp/q = Jb(zp,qba)∞K − J(bzp,qa)∞K, we let ηk and
ζk be the complete quotients of Jb(zp,qba)∞K and J(bzp,qa)∞K, respectively.
Since Jb(zp,qba)∞K and J(bzp,qa)∞K have common convergents Pi/Qi for all
i = 1, 2, . . . , 2q − 3. This fact leads us to derive

Jb(zp,qba)∞K− J(bzp,qa)∞K =
η2q−2P2q−3 + P2q−4

η2q−2Q2q−3 +Q2q−4
− ζ2q−2P2q−3 + P2q−4

ζ2q−2Q2q−3 +Q2q−4

=
η2q−2 − ζ2q−2

(η2q−2Q2q−3 +Q2q−4)(ζ2q−2Q2q−3 +Q2q−4)

With the identities

η2q−2 = J(bazp,q)∞K = 2 +
1

2 +
1

J(azp,qb)∞K

,

and

ζ2q−2 = J(abzp,q)∞K = 1 +
1

1 +
1

J(bzp,qa)∞K
in mind, one has η2q−2 − ζ2q−2 < 1, and also finds

η2q−2Q2q−3 +Q2q−4 > 2Q2q−3 +Q2q−4 > 2F2q−3 + F2q−4 = F2q−1

and

ζ2q−2Q2q−3 +Q2q−4 > Q2q−3 +Q2q−4 > F2q−3 + F2q−4 = F2q−2.
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Gathering these, we deduce

Jb(zp,qba)∞K− J(bzp,qa)∞K <
1

F2q−1F2q−2
=

5

(σ2q − σ2q)(σ2q−1 − σ2q−1)

<
5

(σ2q − σ2q)σ2q−1 =
5σ

σ4q − 1
<

10

σ4q
,

where −1 < σ < 0 and σσ = −1 are used. Therefore, we find for n ≥ 7 that∑
p/q∈Q[0,α)

q>n

(3− lp/q) <
∞∑

q=n+1

10ϕα(q)

σ4q
<

∞∑
q=n+1

10αq

σ4q

=
10α(n(σ4 − 1) + σ4)

(σ4 − 1)2σ4n
<

10ασ4

(σ4 − 1)2
· n

σ4n
=

2αn

σ4n
.

In the proof of Theorem 3.6, most brutal estimations are from Fn < Qn for
every n ≥ 1, and also from ϕα(q) < αq. If q is a prime number, then we have
ϕα(q) = dαqe − 1. However, if q has many prime factors, then ϕα(q) is much
smaller than αq. The next example indicates that the bound in the theorem
admits of a further improvement.

Example 2. For a real number α ∈ (0, 1] and a positive integer n, let

T (α, n) :=
∑

p/q∈Q[0,α)
q>n

(3− lp/q), and R(α, n) :=
2αn

σ4n
.

Computations for n = 10 yield the following table.

α T (α, 10) R(α, 10)

1/3 1.164044× 10−9 2.913420× 10−8

1/2 1.173600× 10−9 4.370130× 10−8

1 1.174009× 10−9 8.740261× 10−8
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