CURVATURE OF GEODESICS AND A
CHARACTERIZATION OF DE SITTER SPACES

DONG-SOO KIM

Department of Mathematics, Chonnam National University, Gwangju, South Korea

We denote by M^n a geodesically connected Lorentzian hypersurface in the $(n + 1)$-dimensional Minkowski space \mathbb{L}^{n+1}. Suppose that every unit speed geodesic $X(s)$ on M^n satisfies $\langle X''(s), X''(s) \rangle \geq 1/r^2$ and there exists a point $p \in M^n$ such that for every unit speed geodesic $X(s)$ of M^n through the point p, $\langle X''(s), X''(s) \rangle = 1/r^2$ holds. Then, we show that up to isometries of \mathbb{L}^{n+1}, M^n is an open part of the de Sitter space $\mathbb{S}^n_1(r)$. Hence if M^n is complete, then M^n is the de Sitter space $\mathbb{S}^n_1(r)$.