MINIMAL NUMBER OF FROBENIUS ELEMENTS OF \(G_{K,S} \) WHOSE CONJUGACY CLASSES GENERATE THE WHOLE GROUP \(G_{K,S} \)

KWANG-SEOB KIM

Abstract. Assume that \(K \) is a number field and \(S \) is a finite set of primes of \(K \). Let \(G_{K,S} \) be the Galois group \(\text{Gal}(K_S/K) \), where \(K_S \) is the maximal extension of \(K \), which is unramified outside the primes in \(S \). It is conjectured that \(G_{K,S} \) is topologically finitely generated, details there of remain largely unknown. However, it has been proved that \(G_{K,S} \) is topologically generated by finitely many conjugacy classes by Ihara [1]. Then we can ask two natural questions. a) Is the Galois group \(G_{K,S} \) also generated by a finite number of conjugacy classes of the Frobenius elements? b) If \(G_{K,S} \) can be generated by a finite number of conjugacy classes of the Frobenius elements, what is the minimal number of generators? Let \(G_{K,S}^{ab} \) be the abelianization of \(G_{K,S} \). Suppose that the rank of \(G_{K,S}^{ab} \) is \(r \). In this article, we define a new topology on \(\text{Spec} \, O_K \setminus S \) and use this topology to show that \(G_{K,S} \) can be generated by \(r \) (or 1 if \(r = 0 \)) Frobenius classes and \(r \) is minimal.

1. Introduction

Let \(K \) be a number field and \(S \) be the finite set of primes of \(K \). In recent years, there has been considerable interest in the properties of the Galois group

\[
G_{K,S} = G_S(K) = \text{Gal}(K_S/K),
\]

where \(K_S \) is the maximal extension of \(K \), which is unramified outside the primes in \(S \). Although it is conjectured that \(G_{K,S} \) is topologically finitely generated, details there of remain largely unknown. However, it has been proved that \(G_{K,S} \) is topologically generated by finitely many conjugacy classes. This result can be proved in two ways.

First, this result can be deduced from the result obtained by Ihara [1].

Theorem 1.1. (Proposition 1 of [1]) Assume that \(k \) is an algebraic number field and \(M/k \) is an infinite unramified Galois extension of \(k \). Let \(p \) be a finite prime of \(k \) and \(f(p) \) be the residue extension degree of \(p \) in \(M/k \). Define \(T(M/k) := \{ p | p \in \text{Spec} \, O_k, f(p) < \infty \} \). Then, we have

\[
\sum_{p \in T(M/k)} \frac{\log N(p)}{N(p)f(p)-1} \leq C_k
\]

for some constant \(C_k \) depending on \(k \), i.e., the expression on the left is convergent.

From the above theorem, we know that the Galois group \(G_{K,S} \) can be topologically generated by a finite number of conjugacy classes; refer to Corollary 10.9.11

2010 Mathematics Subject Classification. Primary 11R99.
Key words and phrases. Minimal number of generators and Frobenius elements.
of [2]. Moreover, in the proof of this corollary, we also know that the Galois group \(\text{Gal}(K_{ur}/K) \) is generated by finitely many Frobenius classes, where \(K_{ur} \) is the maximal unramified extension of \(K \). (Note that a conjugacy class does not need to be a Frobenius class in the case of infinite extensions.)

Some aspects of the proof of Ihara’s theorem appear to closely approximate a bound of the set of conjugacy classes generating \(G_{K,S} \). Let \(G_{ab}^{\text{K,S}} \) be the abelianization of \(G_{K,S} \), i.e., \(G_{ab}^{\text{K,S}} = \text{Gal}(K_{ab}^{\text{S}}/K) \) where \(K_{ab}^{\text{S}} \) is the maximal abelian extension of \(K \), which is unramified outside the primes in \(S \). The fact that \(G_{ab}^{\text{K,S}} \) is finitely generated means that the following purely group theoretical result yields not only the alternative proof but also the effective bound of the set of generators of \(G_{K,S} \).

Theorem 1.2. (Guralnick, Weiss, Theorem 10.2.6 in [2]) Let \(G \) be a profinite group with abelianization of rank \(r \). Then, \(G \) can be topologically generated by \(r \) (or \(1 \) if \(r = 0 \)) conjugacy classes.

From the above theorem, we know that \(G_{K,S} \) can be topologically generated by \(r \) (or \(1 \) if \(r = 0 \)) conjugacy classes. Now, two natural questions arise.

1. Considering that the proof that \(G_{K,S} \) can be topologically generated by a finite number of conjugacy classes already exists, is the Galois group \(G_{K,S} \) also generated by a finite number of conjugacy classes of the Frobenius elements?

2. If \(G_{K,S} \) can be generated by a finite number of conjugacy classes of the Frobenius elements, what is the minimal number of generators?

In this article, we prove the following theorem by using topological methods.

Theorem 1.3. Let \(K \) be a number field and \(S \) be the finite set of primes of \(K \). Define \(G_{K,S} = \text{Gal}(K_S/K) \), where \(K_S \) is the maximal extension of \(K \), which is unramified outside the primes in \(S \). Suppose that the rank of \(G_{ab}^{\text{K,S}} \) is \(r \). Then, \(G_{K,S} \) can be generated by \(r \) (or \(1 \) if \(r = 0 \)) conjugacy classes of Frobenius elements of \(G_{K,S} \).

2. Proof of Theorem 1.3

2.1. **A new topology in** \((\text{Spec } O_K) \setminus S\). Let \(\text{Spec } O_K \) be the set of prime ideals of \(O_K \), where \(O_K \) is the ring of integers of \(K \). When we think about the topology of \((\text{Spec } O_K) \), we generally think about the Zariski topology. In this section, we define a new topology on \((\text{Spec } O_K) \setminus S \).

Define

\[T := \{ p \mid p \text{ is a prime number and } p\text{-part of } G_{ab}^{\text{K,S}} \text{ is nontrivial} \}. \]

Since \(G_{ab}^{\text{K,S}} \) is finitely generated, \(P \) is a finite set, i.e., \(T = \{ p_1, p_2, \ldots, p_m \} \).

Let us consider the finite quotients of \(G_{K,S} \). Then, they can be roughly classified as follows:

- The largest elementary abelian \(p_i \)-quotient of \(G_{K,S} \) for each \(p_i \in T \).
- A finite nonabelian simple quotient of \(G_{K,S} \).

(Note that every quotient of \(G_{K,S} \) has at least one quotient in the above.) Now,
Kwang-Seob Kim
Minimal number of generators of $G_{K,S}$

let us define some field extensions of K.

i) Let P_i be the largest elementary abelian p_i-quotient of $G_{S}(K)$ for each $p_i \in T$. Then, P_i corresponds to a Galois extension F_i/K which is the P_i-extension of K unramified outside S. Here is a diagram.

\[
\begin{array}{ccc}
K & K_{S}^{ab} & G_{K,S}^{ab} \\
| & | & | \\
| & | & \downarrow \\
| & | & G_{K,S} \\
K_p & F_i & G_{K,S}^{ab} \\
| & | & | \\
| & | & \downarrow \\
| & | & F_i \\
K & K_{S}^{ab} & G_{K,S}^{ab} \\
| & | & | \\
| & | & \downarrow \\
| & | & F_i \\
K
\end{array}
\]

By the definition of P_i,

$$P_i \simeq \prod_{j=1}^{r_i} \mathbb{Z}/p_i \mathbb{Z}. $$

Define $F_{i,j}$ as the Galois extension of K corresponding to $\mathbb{Z}/p_i \mathbb{Z}$ for each j.

Then P_i can be written as the following.

$$P_i \simeq \text{Gal}(F_i/K) \simeq \text{Gal}(F_{i,1}F_{i,2} \cdots F_{i,r_i}/K) \simeq \prod_{j=1}^{r_i} \text{Gal}(F_{i,j}/K),$$

where r_i is the rank of P_i and $F_{i,j}$ is a $\mathbb{Z}/p_i \mathbb{Z}$-extension of K for each j. We easily verify that $r := \max(r_1, r_2, \ldots, r_n)$ is the rank of $G_{S}^{ab}(K)$. Define $L_i := F_{i,1}$ and $G_i := \text{Gal}(F_{i,1}/K)$ for $1 \leq i \leq n$.

ii) The finite nonabelian simple quotient of $G_{S}(K)$ corresponds to a finite non-abelian simple extension of K, which is unramified outside S. Then, there is a possibility that K has infinitely many such extensions and let \mathcal{R} be the set comprising these extensions. If we assume that \mathcal{R} is an infinite set, then \mathcal{R} can be represented as follows:

$$\mathcal{R} = \{M_i | M_i/K \text{ is unramified outside } S \text{ and } \text{Gal}(M_i/K) \text{ is nonabelian simple.}\}$$

for each $1 \leq i < \infty$. Define $L_{m+i} := M_i$ and $G_{m+i} := \text{Gal}(M_i/K)$ for $1 \leq i < \infty$.

3
Now, let \hat{L} be the compositum of all L_i’s ($1 \leq i < \infty$). Then,

$$\text{Gal}(\hat{L}/K) \simeq \prod_{i=1}^{\infty} \text{Gal}(L_i/K).$$

We want to define a topology in the Galois group $\text{Gal}(\hat{L}/K)$. First, let us define a topology in the Galois group $\text{Gal}(L_i/K)$ for each i. $\text{Gal}(L_i/K)$ can be represented as a union of two sets $C_{i,1}$ and $C_{i,2}$, where $C_{i,1}$ is the set of the identity $\{e\}$ and $C_{i,2}$ is the union of all non-trivial conjugacy classes of $\text{Gal}(L_i/K)$. We define $C_{i,1}$ and $C_{i,2}$ as the open basis for $\text{Gal}(L_i/K)$. Then, we easily verify that $\text{Gal}(L_i/K)$ is a topological space and is compact for all i. Finally, we present the product topology in $\text{Gal}(\hat{L}/K)$ and this topological space is also compact by the Tychonoff theorem.

Next, we define a topology in $(\text{Spec } O_K) \setminus S$. Let S_i be the set of primes of K, which splits completely in L_i/K and let N_i be the set of primes of $(\text{Spec } O_K) \setminus S$ which does not split completely in L_i/K for all i. (Note that $(\text{Spec } O_K) \setminus S = S_i \cup N_i$).

Now, we define all of the finite intersections of S_i and N_j as the open basis for $(\text{Spec } O_K) \setminus S$ for all i and j.

2.2. Compactness of $(\text{Spec } O_K) \setminus S$. By the Chebotarev density theorem, there is a natural correspondence between the open basis of $(\text{Spec } O_K) \setminus S$ and that of $\text{Gal}(\hat{L}/K)$:

First, let us determine the correspondence between S_i (resp. N_i) and $C_{i,1}$ (resp. $C_{i,2}$). Then the following hold.

\begin{equation}
\{\text{open basis of } (\text{Spec } O_K) \setminus S\} \leftrightarrow \{\text{open basis of } \text{Gal}(\hat{L}/K)\}
\end{equation}

\begin{equation}
S_i \leftrightarrow C_{i,1} \times \prod_{k=1,k\neq i}^{\infty} \text{Gal}(L_k/K) \quad \text{and} \quad N_i \leftrightarrow C_{i,2} \times \prod_{k=1,k\neq i}^{\infty} \text{Gal}(L_k/K).
\end{equation}

From the Chebotarev density theorem, we also know that the whole space $(\text{Spec } O_K) \setminus S$ corresponds to the whole space $\text{Gal}(\hat{L}/K)$:

\begin{equation}
(\text{Spec } O_K) \setminus S \leftrightarrow \text{Gal}(\hat{L}/K) \quad \text{and} \quad \text{the empty set} \leftrightarrow \text{the empty set}.
\end{equation}
Similarly, we verify the correspondence between the intersection of an open basis of \((\text{Spec } O_K) \setminus S\) and the intersection of an open basis of \(\text{Gal}(\hat{L}/K)\). For example,

\[
\{\text{open basis of } (\text{Spec } O_K) \setminus S\} \iff \{\text{open basis of } \text{Gal}(\hat{L}/K)\}
\]

\[
S_i \cap S_j \leftrightarrow C_{i,1} \times C_{j,1} \times \prod_{k=1, k \neq i, j}^{\infty} \text{Gal}(L_k/K)
\]

\[
N_i \cap N_j \leftrightarrow C_{i,2} \times C_{j,2} \times \prod_{k=1, k \neq i, j}^{\infty} \text{Gal}(L_k/K)
\]

\[
S_i \cap N_j \leftrightarrow C_{i,1} \times C_{j,2} \times \prod_{k=1, k \neq i, j}^{\infty} \text{Gal}(L_k/K)
\]

(2.3)

\[
N_i \cap S_j \leftrightarrow C_{i,2} \times C_{j,1} \times \prod_{k=1, k \neq i, j}^{\infty} \text{Gal}(L_k/K)
\]

for any \(i\) and \(j\). This correspondence is well defined since the Chebotarev density theorem implies that a Galois extension of \(K\) is uniquely determined by the set of primes of \(K\) that split completely in it. Thus, there is a natural one-to-one correspondence between the open basis of \((\text{Spec } O_K) \setminus S\) and that of \(\text{Gal}(\hat{L}/K)\).

Let \(V\) be an arbitrary open set of \(\text{Gal}(\hat{L}/K)\). Then \(V\) can be written as the union of the open basis of \(\text{Gal}(\hat{L}/K)\), i.e., \(V = \cup B_\alpha\), where \(B_\alpha\) are open bases of \(\text{Gal}(\hat{L}/K)\). We know that for each \(B_\alpha\) in \(\text{Gal}(\hat{L}/K)\), there is a corresponding open basis \(C_\alpha\) in \((\text{Spec } O_K) \setminus S\). Let \(U := \cup C_\alpha\). Then \(V\) corresponds to \(U\).

Similarly, for an arbitrary open set \(U\) of \((\text{Spec } O_K) \setminus S\), we also know that there exists a corresponding open set \(V\) in \(\text{Gal}(\hat{L}/K)\).

From this correspondence, we know that there is a natural one-to-one correspondence between an arbitrary open set \(U\) of \((\text{Spec } O_K) \setminus S\) and an open set \(V\) of \(\text{Gal}(\hat{L}/K)\). Let \(\mathfrak{U}\) be an open cover of \((\text{Spec } O_K) \setminus S\), i.e.,

\[
(\text{Spec } O_K) \setminus S \subset \mathfrak{U} = \bigcup U_\alpha.
\]

Define \(V_\alpha\) as the open set of \(\text{Gal}(\hat{L}/K)\) that corresponds to \(U_\alpha\) for all \(\alpha\) and \(\mathfrak{V}\) as \(\bigcup V_\alpha\). Then \(\mathfrak{V}\) is an open cover of \(\text{Gal}(\hat{L}/K)\), i.e.,

\[
\text{Gal}(\hat{L}/K) \subset \mathfrak{V} = \bigcup V_\alpha.
\]

Since \(\text{Gal}(\hat{L}/K)\) is a compact space, it has a finite subcover, i.e.,

\[
\text{Gal}(\hat{L}/K) \subset (V_{\alpha_1} \cup V_{\alpha_2} \cup \cdots \cup V_{\alpha_l}).
\]

Let \(U_{\alpha_1}\) be the corresponding open set of \(V_{\alpha_1}\). Then we know that there is a correspondence

\[
(\cup_{\alpha_1} \cup U_{\alpha_2} \cup \cdots \cup U_{\alpha_l}) \leftrightarrow (V_{\alpha_1} \cup V_{\alpha_2} \cup \cdots \cup V_{\alpha_l}).
\]

(2.4)

Since \((V_{\alpha_1} \cup V_{\alpha_2} \cup \cdots \cup V_{\alpha_l})\) is the whole space \(\text{Gal}(\hat{L}/K)\), we know that \((U_{\alpha_1} \cup U_{\alpha_2} \cup \cdots \cup U_{\alpha_l}) = (\text{Spec } O_K) \setminus S\). (See (2.2)). In conclusion, we can deduce that the topological space \((\text{Spec } O_K) \setminus S\) is also compact.
2.3. **Proof of Theorem 1.3.** First, we assume that the rank \(r \) of \(G_{K,S}^{ab} \) is nonzero. Now, we define a sequence \(\{X_i\} \) of closed subsets in \((\text{Spec } O_K) \setminus S:\)

- Define \(X_1 \) as \(N_1 \) and \(X_i \) as \(\cap_{j=1}^i N_j \), i.e., \(X_i \supset X_{i+1} \).

By the Chebotarev density theorem, we know that \(X_i \) is nonempty for each \(i \). Since \((\text{Spec } O_K) \setminus S\) is compact, we know that

\[
X := \bigcap_{i=1}^{\infty} X_i \neq \emptyset
\]

by Cantor’s intersection theorem.

Now, let us select a nontrivial element \(p \in X \). By definition of \(X_i \), \(p \) is contained in \(N_i \) for all \(i \), i.e., \(p \) does not split completely in all \(L_i/K \). Since each Gal\((L_i/K)\) is a simple group and the Frobenius element of \(p \) is nontrivial, the Frobenius element of \(p \) generates Gal\((L_i/K)\) for all \(i \). Now, let us think about the Frobenius element of \(p \) and recall the Galois group Gal\((\hat{L}/K)\). This Galois group is the direct product of the abelian part \(\prod_{m=1}^i \text{Gal}(L_i/K) \) and the non-solvable part \(\prod_{i=m+1}^{\infty} \text{Gal}(L_i/K) \).

Let us evaluate the abelian part. Since \(\prod_{i=1}^m \text{Gal}(L_i/K) \simeq \prod_{i=1}^m \mathbb{Z}/p_i \mathbb{Z} \) and each \(p_i \) are distinct, we easily verify that the Frobenius element of \(p \) generates the whole group \(\prod_{i=1}^m \text{Gal}(L_i/K) \).

Next, let us consider the non-solvable part. Since each Gal\((L_i/K)\) is a non-abelian simple group and the Frobenius element of \(p \) corresponds to a non-trivial conjugacy class in each Gal\((L_i/K)\), the normal subgroup generated by the Frobenius element of \(p \) is the whole group \(\prod_{i=m+1}^{\infty} \text{Gal}(L_i/K) \), i.e., the Frobenius element of \(p \) generates the whole group \(\prod_{i=m+1}^{\infty} \text{Gal}(L_i/K) \).

In conclusion, the Frobenius element of \(p \) generates Gal\((\hat{L}/K)\). Now, let us recall the definition of \(F_{i,j} \) in Section 2.1. To simplify the notation, we write \(F' \) instead of \(\left(\prod_{i=1}^m \prod_{j=2}^{i-1} F_{i,j} \right) \). Then, we verify that the rank of Gal\((F'/K)\) is \(r - 1 \). Since \(F'/K \) is a finite abelian extension, there exist \(r - 1 \) conjugacy classes of the Frobenius elements \(\text{Frob}_{p_1}, \text{Frob}_{p_2}, \ldots, \text{Frob}_{p_{r-1}} \), which generate Gal\((F'/K)\). (Note that \(r - 1 \) is the minimal number of generators.) The primes \(p_1, p_2, \ldots, p_{r-1} \) can be chosen to be distinct from \(p \) by the Chebotarev density theorem.

Finally, we know that the conjugacy classes of the Frobenius elements of \(p_1, p_2, \ldots, p_{r-1} \) generate \(G_{K,S}^{ab} \), and every nonabelian simple quotient of \(G_{K,S} \). Thus, we know that \(G_{K,S} \) can be generated by conjugacy classes of the Frobenius elements \(\text{Frob}_{p_1}, \text{Frob}_{p_2}, \ldots, \text{Frob}_{p_{r-1}}, \text{Frob}_{p_r} \).

In the case of \(r = 0 \), we can easily verify that the Frobenius element of \(p \) generates the whole group \(G_{K,S} \).

Acknowledgement

I would like to thank my advisor, Minhyong Kim, for introducing me to this problem and his steadfast encouragement.
REFERENCES

School of Mathematics, Korea Institute for Advanced Study, Seoul, Korea, 130-722

E-mail address: kwang12@kias.re.kr