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1 Differentiation and Line Integrals

Definition (Derivative). Let U be an open set in Rn and let f : U ⊂ Rn → Rm be a given

function. We say that f is differentiable at x0 ∈ U if the partial derivatives of f exist

at x0 and if

lim
x→x0

||f(x)− f(x0)− T (x− x0)||
||x− x0|| = 0

whrer T is the matrix with matrix elements ( ∂fi∂xj
) evaluated at x0. We call T the

derivative of f at x0 and denote by Df(x0).

Df(x0) =




∂f1

∂x1
. . .

∂f1

∂xn
... . . .

...
∂fm
∂x1

. . .
∂fm
∂x1



.

Definition (Gradient). Consider the special case f : U ⊂ Rn → R.

Df(x) = ∇f(x) =
(
∂f

∂x1
, · · · , ∂f

∂xn

)

called the gradient of f on x.

Definition (Directional derivative). Consider the special case f : U ⊂ Rn → R.

d

dt
f(x + tv) |t=0 = lim

h→0

f(x + hv)− f(x)
h

called the directional derivative of f at x in the direction of a unit vector v if it exists.

Theorem 1.1 (Directional derivative and Gradient).

d

dt
f(x + tv) |t=0 = Df(x) v = ∇f(x) · v

=
∂f(x)
∂x1

v1 +
∂f(x)
∂x2

v2 + · · ·+ ∂f(x)
∂xn

vn

where v = (v1, v2, · · · , vn) and ||v|| = 1.

1. Assume ∇f(x) 6= 0. Then ∇f(x) points in the direction along which f is increas-

ing the fastest.
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2. ∇f(x0) is normal to the level surface:

Let S be the surface consisting of those (x, y, z) such that f(x, y, z) = k. The

tangent plane of S at a point (x0, y0, z0) of S is defined by the equation

∇f(x0, y0, z0) · (x− x0, y − y0, z − z0) = 0

if ∇f(x0, y0, z0) 6= 0.

Definition (Path Integrals). The path integral or the integral of f(x, y, z) along the path

σ is defined when σ : I = [a, b] → R3 is C1 and when the composite function t 7→
f(x(t), y(t), z(t)) is continuous on I. We define this integral by the equation

∫

σ
f ds =

∫ b

a
f(x(t), y(t), z(t)) ||σ′(t)|| dt

=
∫ b

a
f(σ(t)) ||σ′(t)|| dt.

Definition (Work done by F). Let F be a vector field on R3, continuous on the C1 path

σ : [a, b]→ R3. We define the line integral of F along σ, by the formula
∫

σ
F · ds =

∫ b

a
F(σ(t)) · σ′(t)dt

that is, we integrate the dot product of F with σ′ over the interval [a, b].

Another case : Let F be a vector field on R3 and let C be a smooth curve with position

vector s at P . Then ∫

C
F · ds =

∫

C
(F · u)ds

where u is a unit tangent vector to C at P , i.e.,

ds =
ds
ds
ds = uds.

Theorem 1.2. Suppose f : R3 → R is C1 and that σ : [a, b] → R3 is a piecewise C1 path.

Then ∫

σ
∇f · ds = f(σ(b))− f(σ(a)).

Another case : For any curve C joining the points P0, P1,
∫

C
∇f · ds =

∫ P1

P0

∇f · ds = f(P1)− f(P0).
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Example. Let σ(t) = (t4/4, sin3(tπ/2), 0), t ∈ [0, 1]. Evaluate
∫

σ
y dx+ x dy.

Sol. f(x, y, z) = xy implies ∇f = (y, x, 0).
∫

σ
y dx+ x dy =

∫

σ
∇f · ds = f(σ(1))− f(σ(0)) =

1
4
.

Example. Let F = (yx, xy, xz) and let C be a curve consisting of the curve x = y2, z = 0 in

the xy plane from (1, 1, 0) to (1, 1, 0).

Evaluate the work done by the force in moving the particle along C.

Sol.

x = y2, z = 0 =⇒ dx = 2y dy, dz = 0,

F · ds = yzdx+ xydy + xzdz = y3dy.
∫

C
F · ds =

∫ 1

0
y3 dy =

1
4
.

2 Vector Fields

Definition (Vector Field). A vector field on Rn is a map F : A ⊂ Rn → Rn that assigns

to each point x in its domain A a vector F(x).

Definition (Flow line). If F is a vector field, a flow line for F is a path σ(t) such that

σ′(t) = F(σ(t)).

That is, F yields the velocity field of the path σ(t).

Remark. Analytically, the problem of finding a flow line that passes through x0 at time t = 0

involves solving the differential equation with initial condition:

σ′(t) = F(σ(t)); σ(0) = x0.
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Definition (Flows of Vector Fields). We call the mapping φ the flow of F when φ(x, t) is

defined by

φ(x, t) =

{
the position of the point on the flow line

through x after time t has elapsed

}

which satisfies

∂

∂t
φ(x, t) = F(φ(x, t))

φ(x, 0) = x.

Remark.
∂

∂t
Dxφ(x, t) = DxF(φ(x, t)) ·Dxφ(x, t)

is called the equation of first variation.

Theorem 2.1 (Curl of gradient and Divergence of curl).

For any C2 function f we have

∇× (∇f) = 0.

For any C2 vector field F we have

div curl F = ∇ · (∇× F) = 0.

∇× F is related to rotations

∇× F = 0 =⇒ F is irrotational

∇ · F is related to compressions and expansions

∇ · F = 0 =⇒ F is incompressible
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3 Green’s Theorem [Divergence Theorem]

Theorem 3.1 (Green’s Theorem). Let D be a region on R2 and let C be its boundary.

Suppose P :−→ R and Q :−→ R are C1. Then
∫

C+

P dx+Qdy =
∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

Proof.

∂Q

∂x
dxdy on D = Qdy on C+,

∂P

∂y
dxdy on D = − P dx on C+.

Example. For P (x, y) = x and Q(x, y) = xy where D is the unit disc x2 + y2 ≤ 1.

∫

∂D
Pdx+Qdy =

∫ 2π

0
[(cos t)(− sin t) + cos t sin t cos t]dt = 0.

So ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

D
ydxdy = 0.

Corollary 3.2. If C is a simple closed curve that bounds a regin to which Green’s Theorem

applies, then the area of the region D bounded by C is

A =
1
2

∫

∂D
xdy − ydx.

Since
1
2

∫

∂D
xdy − ydx =

1
2

∫

D

(
∂x

∂x
− ∂(−y)

∂y

)
dxdy =

∫

D
dxdy = A.

Theorem 3.3 (Vector Form of Green’s Theorem). Let D ⊂ R2 be a region and let ∂D

be its boundary. Let F = P i +Qj be a C1 vector field on D. Then
∫

∂D
F · ds =

∫

D
(curlF) · k dA =

∫

D
(∇× F) · k dA

where

∇× F =

∣∣∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

P (x, y) Q(x, y) 0

∣∣∣∣∣∣∣∣
.
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Example. Let F = (xy2, y + x). Integrate (∇ × F) · k over the region in the first quadrant

bounded by the curves y = x2 and y = x.

Sol. The First Case :

∇× F =
(

0, 0,
∂F2

∂x
− ∂F1

∂y

)
= (1− 2xy)k =⇒ (∇× F) · k = 1− 2xy.

Hence
∫∫

D

(∇× F) · k dxdy =
∫ 1

0

∫ x

x2

(1− 2xy) dydy

=
∫ 1

0
[y − xy2]xx2 dx

=
∫ 1

0
[x− x3 − x2 + x5] dx =

1
12
.

The Second Case :

With C1 : y = x and C2 : y = x2,
∫

∂D
F · ds =

∫

C1∪C2

F1 dx+ F2 dy.

∫

C1

F1dx+ F2dy =
∫ 1

0
(xy2)dx+ (y + x)dy =

∫ 1

0
(xx2)dx+ (x+ x)d(x)

=
∫ 1

0
(x3 + 2x)dx =

5
4∫

C2

F1dx+ F2dy =
∫ 1

0
(xy2)dx+ (y + x)dy =

∫ 1

0
(x(x2)2)dx+ (x+ x2)d(x2)

=
∫ 1

0
(x5 + 2x2 + 2x3)dx =

4
3
.

Theorem 3.4 (Divergence Theorem in the Plane). Let D ⊂ R2 be a region and let ∂D

be its boundary. Let n denote the outward unit normal to ∂D, which is given by

n =
(y′(t),−x′(t))√

(x′(t))2 + (y′(t))2
=
(
dy

dσ
,−dx

dσ

)
.

if σ : [a, b] −→ R2, t 7→ σ(t) = (x(t), y(t)) is positively oriented parametrization of ∂D.
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Let F = (P,Q) be a C1 vector field on D. Then
∫

∂D
F · n ds =

∫

D
∇ · F dA.

since
∫

∂D
F · n ds =

∫

∂D
P dy −Qdx =

∫

D

(
∂P

∂x
+
∂Q

∂y

)
dxdy =

∫

D
div F dA.

For the 3D-case :
∫

R
∆ϕ dV =

∫

R
∇ · ∇ϕ dV =

∫

S
∇ϕ · dS =

∫

S
∇ϕ · n dS =

∫

S

∂ϕ

∂n
dS.
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4 Stokes’ Theorem

Let S be a surface given by z = φ(x, y) on D.
∫∫

S

f(x, y, z) dS =
∫∫

D

f(x, y, z)
√

1 + φ2
x + φ2

y dxdy

since

dS =
∣∣∣∣

1
cos γ

∣∣∣∣ dxdy =
√

1 + φ2
x + φ2

y dxdy with cos γ =
−1√

φ2
x + φ2

y + 12
.

where cos γ is the z−component of unit normal of S : Φ(x, y, z) = z − φ(x, y).

[Change of variables]

x = f(u, v), y = g(u, v) : R 7→ R′
∫∫

R
F (x, y) dxdy =

∫∫

R′
F (f(u, v), g(u, v))

∣∣∣∣
∂(x, y)
∂(u, v)

∣∣∣∣ dxdy.

Theorem 4.1 (Surface integrals of vector field). Let F be a vector field on a surface S :

z = φ(x, y) on D. Then
∫

S
F · dS =

∫

S
F · n dS

=
∫

D
[F1(−zx) + F2(−zy) + F3]

√
1 + z2

x + z2
y dxdy.

Theorem 4.2 (Stokes’ Theorem for Graphs). Let S be the oriented surface defined by a

C2 function z = f(x, y), (x, y) ∈ D, and let F be a C1 vector field on S. Then if ∂S

denotes the oriented boundary curve of S as defined above we have
∫

S
curl F · dS =

∫

S
(∇× F) · dS =

∫

S
(∇× F) · n dS =

∫

∂S
F · ds.

Thus Stokes’ Theorem says that the integral of the normal component of the curl of a vector

field F over a surface S is equal to the integral of the tangential component of F around the

boundary ∂S.

1. In general
∫
C F · ds, being the integral of the tangential component of F, represents the

net amount of turning of the fluid in a counterclockwise direction around C.
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2. One therefore refers to
∫
C F · ds as the circulation of F around C.

3. curl F(P ) · n is the circulation of F per unit area on a surface perpendicular to n

4. Ovserve that the magnitude of curl F · n is maximized when n = curl F/||curl F||.

5. Therefore the rotating effect at P is greatest about the axis parallel to curl F/||curl F||.

6. Thus curl F is aptly called the volticity vector.

5 Conservative Fields

Theorem 5.1 (Conservative vector Fields). Let F be a C1 vector field defined on R3 ex-

cept possibly for a finite number of points. The following conditions on F are all equivalent:

(i) For any oriented simple closed curve C,
∫
C F · ds =. So

∫
D∇ · F dA = 0.

(ii) For any two oriented simple curves C1, C2 with the same endpoints,
∫
C1

F · ds =∫
C2

F · ds.
(iii) F is the gradient of some function ; (F = ∇f)

(iv) ∇× F = 0. ( ∇ · F = 0 −→ ∇× F = 0 )

Example. Consider the vector field F on R3 defined by

F(x, y, z) = (y, x cos yz + x, y cos yz).

Show that F is irrotational and find a scalar potential for F.

Sol. 1. Clearly, ∇× F = 0.

2. By setting

f(x, y, z) =
∫ x

0
F1(t, 0, 0)dt+

∫ y

0
F2(x, t, 0)dt+

∫ z

0
F3(x, y, t)dt,

one can show that F = ∇f .

Theorem 5.2. If F is a C1 vector field on R3 with div F = 0, then there exists a C1 vector

field G with F = curl G.
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6 Gauss’ Theorem

Theorem 6.1 (Gauss’ Divergence Theorem in 3D). Let Ω be a region in R3. Denote by

∂Ω the oriented closed surface that bounds Ω. Let F be a smooth vector field defined on Ω.

Then ∫

Ω
(∇ · F) dV =

∫

∂Ω
F · dS

or alternatively ∫

Ω
(div F) dV =

∫

∂Ω
(F · n) dS.

Example. Use the Divergence Theorem to evaluate
∫

∂W
(x2 + y + z) dS

where W is the solid ball x2 + y2 + z2 ≤ 1.

Sol. We must find some vector field F = (F1, F2, F3) on W with

F · n = x2 + y + z.

At any point (x, t, z) ∈ ∂W the outward unit normal n to ∂W is n = (x, y, z). Therefore,

from an equation

F · n = F1x+ F2y + F3z = x2 + y + z

we set and solve for F1 , F2, F3 to find that F = (x, 1, 1) and div F = 1 + 0 + 0 = 1.

Thus by Gauss’ Divergence Theorem
∫

∂W
(x2 + y + z) dS =

∫

W
dV = volume(W ) =

4
3
π.
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7 Application to 2D Incompressible Fluid Flow

If the flow is divergenceless and irrotational, (that is, if there are no distributions of sources or

sinks or of vortices, about which the fluid tends to rotate, and if also the fluid is assumed to be

incompressible) we have seen that the velocity vector V is the gradient of a function ϕ, called

the velocity potential, and that ϕ satisfies Laplace’s equation.

That is, for such a V, ∃ ϕ s.t. V = ∇ϕ and ∆ϕ = 0.

• The equipotential lines : the level curve ϕ(x, y) = c1.

• The streme lines : the velocity vectors of the streamelines ψ(x, y) = c2 are normal to

equipotential lines ϕ(x, y) = c1, that is,

∇ϕ · ∇ψ = 0

Example. For the velocity vector V = (2x,−2y),

• there exists a velocity potential ϕ = x2 − y2 by using integration.

• the equipotential curves in the xy plane are the hyperbolas x2 − y2 = c1.

• from the equation

∇ψ = (−∂ϕ
∂y
,
∂ϕ

∂x
) = (2y, 2x),

we can determine the stremelines which is the hyperbolas ψ = 2xy = c2.

• considering ψ = 2xy as the velocity potential in a conjugate flow yields that ϕ =

x2 − y2 can be considered the stream function.


