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Taylor Polynomials| 3]

1 TAYLOR POLYNOMIALS

1.1 THE TAYLOR POLYNOMIAL

— Most function f(x) (e.g. cosx,e”,\/x) cannot be evaluated exactly in simple way.
— The most common classes of approximating function f () are the polynomials and an efficient approximating
polynomial is a Taylor polynomial.

— A related form of function is the piecewise polynomial function.

Taylor Polynomial of degree
w for a function f(x) about z =a :

e linear polynomial, p;(z) : pi(a) = f(a) and pi(a) = f'(a)
pi(e) = f(a) + (2 — @) (a).

o quadratic polynomial, pa(s) : pa(a) = F(a), ph(a) = ['(a) and pf(a) = f'(a)
po(a) = (@) + (& — 0) (@) + 3z — a)’f"(a)

e polynomial of degree n, p,(z) : p,(a) = f(a),p),(a) = f'(a),- - ,p;")(a) = f")(a)
(le7p7(1k)(a):f<k)(a)a k20717 7”)

pal@) = f(a) + (x — a) f'(a) + %(x 0 a) o+

]{j:

o

Example (1). Find the Taylor polynomial of degree n, p,(z;a), for f(x) = e* about = = a.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU



1.2 The Error in Taylor’s Polynomial Taylor Polynomaials '—4‘

{_IMatlab coded: 1o compare the three graphs f(x), pi(z) and pa(x) around z =0

z =-1:0.05:1; %hz = (x-a) = x

fx = exp(z); % function value of f(x)

Dkfzero = ones(1l,length(z)); % function value of £~ (k) (x) at x=0
pl = Dkfzero + Dkfzero.x*z; % linear polynomial

p2 = pl + (1/2)*Dkfzero.*(z."2); % quadratic polynomial
plot(z,fx,z,pl,z,p2,’:7)

1.2 THE ERROR IN TAYLOR’S POLYNOMIAL

Theorem 1.1 (Taylor’s Remainder). Assume that f(x) has n + 1 continuous derivatives on an interval |c, 5],
and let a € [a,B]. For the Taylor polynomial p,(x) of f(x), let R,(x) = f(x) — py(x) denote the remainder in

approximating f(x) by p,(x). Then

(x(n_—ka)ln)j1 0 e), a<z<p

with ¢, an unknown point between a and x.

R,(z) =

Example (2). The approximation error of f(z) = e” and its Taylor polynomial p,(z) with a = 0 is given by

e’ — pu(x) = Ry(x) = o] e (n>0) with ¢ between 0 and =.
n !

For each fixed x,
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1.2 The Error in Taylor’s Polynomial Taylor Polynomaials '—5‘

P () = Ro(x) =~ e g b T
e’ — pp(z) = Ry(x) = e as m — 0o because lim — = 0.
Let us take the degree n so that p,(x) approximates f(z) on an interval [—1, 1] with the accuracy
IR, (x)] <1077
Using the upper bound of |R,,(x)|
|x‘n+1 ‘ e 3 9
R, = < < <1077,
)l = D S S S

we can find the sufficient degree n so that the approximation error is bounded by the tolerance 1079 :
|R,(z)| <107° when n > 12.

Some Taylor polynomials :

7 " s
e"=1+r+ -+ -+ —=+—¢
2] Al (1)
3 5 2n—1 241
mr—o_— 4t iyt et
sinz = — o + - + (—1) Gn =1 + (—1) (2n+1)!cosc,
2 4 2n 2n+2
— _ZL’_ l’__ — n_ ¥ _1\n+l x :
cosw =1 ST + (—1) (2n)!+( 1) (2n+2)!smc,
n+1

—1 24 ... n 1
o= ltetat et o, (z#1),

a a a o
(1+$)a=1+( >x+( ):1;‘2+---+< )ZCn—l—( )x”+1(1+c)0‘_”_1,
1 2 n n+1

where the binomial coefficients are defined by
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1.2 The Error in Taylor’s Polynomial Taylor Polynomaials '—6‘

o :oz(oz—l)...(oz—kle)’ k=123,
k k!

Assume that f(z) is infinitely many differentiable at * = a and

lim [f(z) — pn(2)] = lim R,(z) =0,

n—oo n—oo

the infinite series

k=0
is called the Taylor series expansion of the function f(z) about x = a.
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Error and Computer Arithmetic| 7|

2 ERROR AND COMPUTER ARITHMETIC

2.1 FLOATING-POINT NUMBERS

— Numbers must be stored in computers and arithmetic operations must be performed on these numbers.

— Most computers have two ways of storing numbers, in integer format and in floating-point format.

Floating-Point Representation in the Decimal SystemI o
: more 1tuitive

r=o0- -2 10°

where o = +1 or —1 (sign), e is an integer (exponent), and 1 < Z < 10 (significant or mantissa).

For an example,
124.62 = +1 - (1.2462) - 10?

with the sign ¢ = +1, the exponent e = 2, and the significant x = 1.2462.
e The above example is a five-digit decimal floating-point arithmetic.

e The last digit may need to be changed by rounding.
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2.1 Floating-Point Numbers Error and Computer Arithmetic| 8]

Floating-Point Representation in the Binary system'

r=o0-x-10°

where 0 = +1 or —1 (sign), e is an integer (exponent), and (1); < Z < (10), is a binary fraction.

For an example,
(11011.0111)y = (1.10110111)y - 2392 with o = +1, e = (100)y = 4, and 7 = (1.10110111)s.

e The allowable number of binary digits in z is called the precision of the binary floating-point representation.

Single Precision Floating-Point Representation of x

has a precision of 24 binary digits and uses 4 bytes (32 bits):

x=0-(1byg by -+ bg)-2° (mantissa of decimal digits is 7 or 8) in normalized format

with the exponent e limited by
—126 = —(1111110)3 < e < (1111111)y = 127.

o E T
by by by - -+ by bio b11 -+ b2

—126 < e(:= E —127) <127 with 0< E = (bybs -+ bo)s < 255
e But, if E=(00---0)y =0, then e = —126 and & = (0.b19 b1; --- b32)2 with unnormalized format z
o if /= (111)2:255 andbl():"':b?,gzo, thena‘::ioo,
e if E=(11---1), =255 and ~(bjp="--=0bs =0 ) then z = NaN.
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2.2 Accuracy of Floating-Point Representation Error and Computer Arithmetic| 9

Double Precision Floating-Point Representation of x

has a precision of 53 binary digits and uses 8 bytes (64
bits):

T=0"(1b13g by - bgy)-2° with —1022 < e <1023 (mantissa of decimal digits is 15 or 16)

o | E(=e+1023) z
b1 by bg -+ b2 b1z bia -+ bes

2.2 ACCURACY OF FLOATING-POINT REPRESENTATION

Machine epsilon' . ) ) . .
is the difference between 1 and the next larger number that can be stored in the floating-point

format.

In single precision IEEE format, the next larger binary number is
1.00000000000000000000001

with the final binary digit 1 in position 23 to the right of the binary point.
The machine epsilon in single precision format is 2723 ~ 1.1977.

In a similar fashion,
The machine epsilon in double precision format is 27°2 ~ 2.22716,

e In Matlab, it uses the double precision format so that the machine epsilon is eps ~ 2.22716.
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2.2 Accuracy of Floating-Point Representation Error and C omputer Arithmetic| 10

Largest integer M
w that any integer x (0 < x < M) can be stored or represented exactly in floating-point form

e In the single precision format (24 binary digits) :

M = (1.00---0)9 - 224 = 221 = 16777216 ~ 1.67".
e In the double precision format (53 binary digits) :

M = (1.00---0)q - 273 = 253 =~ 9.0%.

2.2.1 ROUNDING AND CHOPPING

Let the significant in the floating-point representation contain n binary digits.
If the number x has a significant  that requires more than n binary bits, then it must be shortened when z is
stored in the computer.
e The simplest method is to simply truncate or chop = to n binary digits ignoring the remaining digits.
e The second method is to round z to n digits based on the size of the part of z following digit n.
Denote the machine floating-point version of a number x by fl(x).

Then fl(z) can be written in the form

fi(z) =2-(14+¢€) with a small number e.

Chopping : =271 < e <0
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Rounding : —27" <€ < 27" : much better
e The IEEE standard is using the rounding :

Single precision : —27% < e <27

Double precision : —27% < ¢ < 2793

2.2.2 ERRORS

Denote by zp the true value and x4 an approximate value.

Error : Error(xy) = xp — x4

Relative Error : Rel(zy4) = Tr— TA
LT

2.2.3 SOURCES OF ERROR

Modelling Errors
Blunders and Mistakes
Physical Measurement Errors

Machine Representation and Arithmetic Errors

Numerical Analysis (Lecture Note)
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2.2 Accuracy of Floating-Point Representation Error and C omputer Arithmetic| 12

Mathematical Approximation Errors

2.2.4 LOSS-OF-SIGNIFICANCE ERRORS

Compare the followings :
x
fa) = o (VITT = V) fa) =

To avoid the loss of significant digits, use another formulation for f(z), avoiding the subtraction of nearly equal

quantities.

2.2.5 NOISE IN FUNCTION EVALUATION

Using floating-point arithmetic with rounding or chopping, arithmetic operations (e.g., additions and multiplications)

cause errors in the evaluation of f(z), generally quite small ones.
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2.3 UNDERFLOW AND OVERFLOW ERRORS

w . Attempts to create numbers that are too small lead to what are called underflow errors.

For example, consider an evaluation
f(x) =21 for z near 0.

In the single precision arithmetic, the smallest nonzero positive number expressible in normalized floating-point

format (using the form of significant £ = (1.a; - - - ag3)2) is
m=(1.0---0)- 27120 = 27120 &~ 118 x 107,
Thus f(x) will be set to zero if
D0 <m = |zl < Uma~161x1070 <=  —0.000161 < z < 0.000161

e If the use of unnormalized floating-point numbers (using the form of significant & = (0.ay - - ag3)2) allows to

represent the smaller number.
m=(0.0---1)y-27126 = 2719 ~ 1.4 x 107%.

e Matlab uses the double precision unnormalized floating-point numbers.

(Using the form of significant & = (0.aq - - - as2)2)

m = (0.0---1)y-27102 = 2710™ ~ 4 94 x 1073* but 27107 = 0 = 107324,
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2.3 Underflow and Overflow Errors Error and Computer Arithmetic| 14

: Attempts to create numbers that are too large lead to what are called overflow errors (more fatal

errors).

In the double precision arithmetic, the largest positive number expressible in floating-point format
M= (11---1)-212 = (1.1..-1)y-2°%. 297
= (11--+1)- 29t = (2% — 1) - 297 &~ 1.80 x 1038,

It is possible to eliminate an overflow error by just reformulating the expression being evaluated.

For example, with very large z and y (e.g., x = 10?®’ and y = 10'*"), compare the followings

Y VI (/)2 0 < Jy| < |7
z=\/x*+y and z =
lyl V14 (z/y)2,  0<|z| <y

LM Add S from smallest to largest terms for the sum

n
S:a1+a2—|—--~+an:Zaj
j=1

A Loop Error' _ _ _ .
Keep away from successive repeated rounding errors in operations.

X = a;
forj=1m
. _ forj=1m _
The following loop x = a + j*h |is better than in general.
) X=xXx+4+h
en
end
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3 RooTFINDING

Calculating the roots of an equation f(z) =0

3.1 THE BISECTION METHOD

Suppose that f(x) is continuous on an interval a < x < b and that

fla)f(b) <0.

Algorithm (Bisection Method) To find t to f(z) =0
: 1o ind a root to f(x) =

Input Arguments : function f, Initial guess a and b, Tolerance tol
Output Argument : approximated root ¢
1. Define ¢ = (a +b)/2.
2. If b— ¢ < tol, then accept ¢ as the root and stop.
3. If sign[f(b)] - sign[f(c)] <0, then set a = c.
Otherwise, set b = c.

4. Return to step 1.

60

50

40

301

201

101

-10

Bisection Method

c=(a+b)/2

-20
0

I I I I
0.5 1 15 2
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3.1 The Bisection Method RootFinding 16

Error Bounds I

Let a,, b, and ¢, denote the nth computed values of a, b and ¢, respectively. Then

1 1
bpi1 — Qpi1 = §(bn —ay) = 2—n(b —a), n>1

Since a root « is in either the interval [a,, ¢,] or [c,, by),
la—c,| <cp—a,=b,—c, = %(bn —ay) = %(b —a). <« linear convergence
Hence,

the iterates ¢, converge to a as n — oc.

How many iterations?

From
1
la—c,| < %(b—a) <'e,
we have
s los (52)
log 2
Advantages

e This method guarantees to converge.

e This method generally converges more slowly than most other methods (e.g., for smooth functions).
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% function [rt, err] = bisect(a,b,tol,maxitr)
if sign(f(a))*sign(f(b)) > 0O
disp(’ f(a) and f(b) are of the same sign. Stop!

end
if a >= b
tmp = b; b =a; a = tmp; % Make a < b
end
c = (a+b)/2; itr = 0;
fprintf (’\n itr a b root f(c) error

while (b-c > tol) & (itr < maxitr)

itr = itr + 1;

if sign(f(b))*sign(f(c)) <= 0, a = c;

else b = c;

end

c = (a+b)/2;

fprintf (’ %4.0f %10.7f %10.7f %10.7f %12.4e
itr, a, b, ¢, £f(c), b-c);

function y = f(x)
y=x."6 - x - 1;

’); return

%12.4e \n’,
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3.2 Newton’s Method RootFinding 18

3.2 NEWTON’S METHOD

Newton Method

40

ol Xog =X~ f(xn) / f’(xn)

y=f(x)

20

10

-10

tangent line

-20 I I I I I I
0.5 1 15 2 25 3 3.5 4

Let y = p1(z) be the linear Taylor polynomial (the tangent line passing through (xg, f(z)) )
of y = f(x) at x = x¢:
pi(x) = f(xo) + f'(20)(z — x0).

If x; is a root of py(z), then

f(x0)
f/(@o)

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU
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3.2 Newton’s Method RootFinding 19

Algorithm (Newton’s Iteration)'
: To find a root of f(x)

With an initial guess xg

Pt T T i)
n

Error Bounds I

Assume that f € C? in some interval about the root o and f’(«) # 0.

n=20,1,2,...

Using Taylor’s theorem yields
/ 1 1
0= f(a> = f(xn) + (CY T xn)f (xn) + §<Q T xn)zf (Cn)

with ¢, an unknown point between o and x,,.
_ f(zn)
f(xn)

2 f"(cn)

! 2f"(wn)

+a—z,+ (0 — )

f(xn)

Using Newton’s iteration () =2y — Tpil,

f/l Cn f// Cn
0=z, —Tpy +o—x, + (0 — xn)22f’((:rn>) or a— T = (a—x,)? _2f’(($n)) .
Thus, we have the second order error estimates (quadratic convergence):
1!
Mla — x| < [M(a— 1) =+ = [M(a — z0)]*"  where 2ff’((fnnn>) < M.

e If the initial error is sufficiently small, then the error in the succeeding iterate will decrease very rapidly.
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Example. Find a root f(z) = 2°

the bisection method.

Example (How to compute A without the division?).
1 _ 1
Assume b > 0. Let f(z) =b— —. Then the root is «a = 5
x

1
Using the derivative f'(x) = —, we have the Newton Method given by
x

h— L
Ln

Tyl = Tp — —3 or Tpi1 = x,(2—bxy).

2
xn

This involves only multiplication and subtraction.

1
For the error, using a = 5 yields

Rel(x,) = [Rel(x,1)]> = -+ = [Rel(z0)]*  (n>0).

1
The Newton iteration converges to a = i with the second order if and only if

%—IO 2
<1l <= 0< 29 < .

|Rel(zo)| <1 <= -1 <= 2
b

If |Rel(x)| = 0.1, then |Rel(z,)| = 1072". (e.g., |Rel(xy)| = 1071°)

What is the first order error?

len| = v len—1] = =7"]eo| with some 0 <y < 1.

— x — 1 with an initial guess o = 1.5 and then compare this with the results for

Numerical Analysis (Lecture Note)
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3.3 SECANT METHOD

Secant Method

40

X =X~ fO) T =% ) T (F(x )=f(x _ )]

n n-1
30

20

10

-10

secant line

20 I I I I I I
0.5 1 15 2 25 3 35 4

Let y = p(z) be the linear polynomial (the secant line) passing through (z¢, f(z¢)) and (x1, f(z1)) :
p(z) = fla1) + flo) - f(xo)(»”? — 1)

1 — Xy
I1 — Xy
f(x1 = f(zo)

Algorithm (Secant Method)l To find b of f(x)
: To find a root of f(x

With two initial guesses xy and z

If x5 is the root of p(z), then z9 = 21 — f(x1)

Tp — Tp-1
n > 1.

flan) = flena) 7

Ip+l = Tp — f(xn) :
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‘Lagrange Interpolation Polynomial Approximation‘

If f € C™! in some interval [a, b] and {x)}?_, C [a,b], then there exists a number &(z) € (a,b) such thaat
£ ()
(n+1)!
with the Lagrange interpolation and the k-th Lagrange shape polynomial of degree n :

f(x) = Pu(z) + (z —x0) -+~ (v — )

n

Po(x) = Zf(xk)lznk(x) and Ly (z) = H (x—w) (x—m)  (v—xn)
k=0

o e ) (ze—x0)  (Tk— @)

Error Bounds I

Assume that f € C? in some interval about the root o and f'(a) # 0.

Using Lagrange interpolation yields

@) = =20 ) 4 ) + Lo = )@ — 2 £1€)
and then
0= f(a) = S ply) I ) + = ) - ) (60)

with &, an unknown point between min{a, x,_1, z,} and max{«a, x, 1, z,}.

Also, we have from the Mean Value theorem that

flxn1) = f(zn) — (7, — xnfl)fl(cn)
with ¢, an unknown point between z, | and x,.

From the last two equations, we have
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0= fn) + o= 1) f(G) + 50 = Tu1)(a = 1) £ (60)
or
_ f(@) _ _ _ f"(&n)
0= Fy Tl e mmale =g gy
Now, using the secant iteration
. . ) Ly — Tp—1 _ . f(xn)
A TP e () B ()
0=(a—zp41)+ (@ —2p1)(a — xn)gf/(én))
so that
a— T = (0 — x5 1)(a—x,) [ 2;1((571))]
Let us consider the following identity
enia] = lenl - lena| M with M ~ ';J{,((j)) ~ |;j§((§)) v
Then
‘en ‘ ‘en| “ . 1 + \/5 1— \/g .
\€n+|i =M - (|€n—1\7) with ~ = 5 A= 5 (te,a+y=1 ay=-1)
so that

Taking the limit

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU
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lim enia] _ M~ lim (Mﬁ@> =M =M because lim " =0,

n—00 |en|7 n—00 |60 ‘7 n—00

we have the following approximate error estimates:

=

1+

~ 1.62.
2

‘€n+1| - ‘O‘ - an+1| ~C ‘O‘ - Inp =C ‘enp with Y=

e I[f the initial error is sufficiently small, then the error in the succeeding iterate will decrease very rapidly.

e Newton method converges more rapidly than the secant method but it requires two function evaluations per
iteration, that of f(x,) and f'(x,).

e And the secant method requires only one evaluation f(z,).

e For many problems with a complicated f'(z), the secant method will probably be faster in actual running time

on a computer.

6

Example. Find a root f(z) = 2" — 2 — 1 with an initial guess zy = 1.5 and then compare this with the results for

the Newton method.
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3.4 Fixed Point Iteration RootFinding 25

3.4 FIXED POINT ITERATION

To find a fixed-point « of g(z) : a = g(a)

I I I I I I I I I
0.2 0.4 0.6 0.8 1 1.2 14 16 18 2

Algorithm (Fixed-Point Iteration)'
: To find a root a of x = g(x)

With an initial guess xg

Tpi1 = g(x,), n>0.

e If the sequence z, converges, then lim z, = a.
n—aoo
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3.4 Fixed Point Iteration RootFinding 26

Lemma 3.1. Let g(z) be a continuous function and suppose g satisfies

a<glx)< for a<x<bh.

Then, the equation x = g(x) has at least one solution « € [a, b).

Theorem 3.2 (Contraction Mapping Theorem). Assume g(z) and ¢'(z) are continuous on |a,b], and assume
a<g(z)<b fora<xz<b. Further assume that
A= ' < 1.
max |g'(z)|

Then
1. There is a unique solution o of x = g(x) in the interval [a,b].

2. For any initial guess xy € [a,b], x, converges to .
)\’I’L
1—A
QO — Tpt1

3. Ja—x,] < |zy — o], (n >0).

4. lim

=g¢'(a) sothat a—x,1=~7g(a)(a—m1x,).
n—oo a — Ty

Corollary 3.3. Assume a € (¢,d). If g(x) and ¢'(x) are continuous in (c,d), and if
9" (@) <1,

then, there is an interval [a,b] around « for which the conclusions of the above theorem are true.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU



3.4 Fixed Point Iteration RootFinding 27

Error Bounds I

We have the linear convergence error bound :

o — xp1| = Ao — x| so that  |a — z,| = N |ae — ).

Aitken Error Estimation' )
: to estimate the error

Denote by A = ¢’(«). Then

a— T, = ANa—z,1)

or

R Tyt (xn - xnfl)

1—A
Denote by

Lp — Tp—1

Ay =

Tp—-1 — Tp-2 .

Then we have the Aitken’s extrapolation formula :
An

11—\

o — T, X (Tp — Tp_1).
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