
Numerical Analysis

Shin, Byeong-Chun

Chonnam National University, Gwangju, Korea

Reference : Elementary Numerical Analysis, Atkinson and Han

CONTENTS CONTENTS 2

Contents

1 Taylor Polynomials 3

1.1 The Taylor Polynomial . 3

1.2 The Error in Taylor’s Polynomial . 4

2 Error and Computer Arithmetic 7

2.1 Floating-Point Numbers . 7

2.2 Accuracy of Floating-Point Representation . 9

2.2.1 Rounding and Chopping . 10

2.2.2 Errors . 11

2.2.3 Sources of Error . 11

2.2.4 Loss-of-Significance Errors . 12

2.2.5 Noise in Function Evaluation . 12

2.3 Underflow and Overflow Errors . 13

3 RootFinding 15

3.1 The Bisection Method . 15

3.2 Newton’s Method . 18

3.3 Secant Method . 21

3.4 Fixed Point Iteration . 25

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

Taylor Polynomials 3

1 Taylor Polynomials

1.1 The Taylor Polynomial

− Most function f(x) (e.g. cos x, ex,
√

x) cannot be evaluated exactly in simple way.

− The most common classes of approximating function f̂(x) are the polynomials and an efficient approximating

polynomial is a Taylor polynomial.

− A related form of function is the piecewise polynomial function.

Taylor Polynomial of degree n
for a function f(x) about x = a :

• linear polynomial, p1(x) : p1(a) = f(a) and p′1(a) = f ′(a)

p1(x) = f(a) + (x− a)f ′(a).

• quadratic polynomial, p2(x) : p2(a) = f(a), p′2(a) = f ′(a) and p′′2(a) = f ′′(a)

p2(x) = f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a).

• polynomial of degree n, pn(x) : pn(a) = f(a), p′n(a) = f ′(a), · · · , p
(n)
n (a) = f (n)(a)(

i.e., p
(k)
n (a) = f (k)(a), k = 0, 1, · · · , n

)

pn(x) = f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a) =

n∑

k=0

(x− a)k

k!
f (k)(a).

Example (1). Find the Taylor polynomial of degree n, pn(x; a), for f(x) = ex about x = a.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

1.2 The Error in Taylor’s Polynomial Taylor Polynomials 4

Matlab Code
: To compare the three graphs f(x), p1(x) and p2(x) around x = 0

z = -1:0.05:1; % z = (x-a) = x

fx = exp(z); % function value of f(x)

Dkfzero = ones(1,length(z)); % function value of f^(k)(x) at x=0

p1 = Dkfzero + Dkfzero.*z; % linear polynomial

p2 = p1 + (1/2)*Dkfzero.*(z.^2); % quadratic polynomial

plot(z,fx,z,p1,z,p2,’:’)

1.2 The Error in Taylor’s Polynomial

Theorem 1.1 (Taylor’s Remainder). Assume that f(x) has n + 1 continuous derivatives on an interval [α, β],

and let a ∈ [α, β]. For the Taylor polynomial pn(x) of f(x), let Rn(x) := f(x) − pn(x) denote the remainder in

approximating f(x) by pn(x). Then

Rn(x) =
(x− a)n+1

(n + 1)!
f (n+1)(cx), α ≤ x ≤ β

with cx an unknown point between a and x.

Example (2). The approximation error of f(x) = ex and its Taylor polynomial pn(x) with a = 0 is given by

ex − pn(x) = Rn(x) =
xn+1

(n + 1)!
ec (n ≥ 0) with c between 0 and x.

For each fixed x,

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

1.2 The Error in Taylor’s Polynomial Taylor Polynomials 5

ex − pn(x) = Rn(x) =
xn+1

(n + 1)!
ec −→ 0 as n −→∞ because lim

n→∞
|x|n
n!

= 0.

Let us take the degree n so that pn(x) approximates f(x) on an interval [−1, 1] with the accuracy

|Rn(x)| ≤ 10−9.

Using the upper bound of |Rn(x)|

|Rn(x)| = |x|n+1

(n + 1)!
ec ≤ e

(n + 1)!
<

3

(n + 1)!
≤ 10−9,

we can find the sufficient degree n so that the approximation error is bounded by the tolerance 10−9 :

|Rn(x)| ≤ 10−9 when n ≥ 12.

Some Taylor polynomials :

ex = 1 + x +
x2

2!
+ · · ·+ xn

n!
+

xn+1

(n + 1)!
ec,

sin x = x− x3

3!
+

x5

5!
− · · ·+ (−1)n−1 x2n−1

(2n− 1)!
+ (−1)n x2n+1

(2n + 1)!
cos c,

cos x = 1− x2

2!
+

x4

4!
− · · ·+ (−1)n x2n

(2n)!
+ (−1)n+1 x2n+2

(2n + 2)!
sin c,

1

1− x
= 1 + x + x2 + · · ·+ xn +

xn+1

1− x
, (x 6= 1),

(1 + x)α = 1 +

(
α

1

)
x +

(
α

2

)
x2 + · · ·+

(
α

n

)
xn +

(
α

n + 1

)
xn+1(1 + c)α−n−1,

where the binomial coefficients are defined by

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

1.2 The Error in Taylor’s Polynomial Taylor Polynomials 6

(
α

k

)
=

α(α− 1) · · · (α− k + 1)

k!
, k = 1, 2, 3, · · · .

Assume that f(x) is infinitely many differentiable at x = a and

lim
n→∞

[f(x)− pn(x)] = lim
n→∞

Rn(x) = 0,

the infinite series
∞∑

k=0

(x− a)k

k!
f (k)(a)

is called the Taylor series expansion of the function f(x) about x = a.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

Error and Computer Arithmetic 7

2 Error and Computer Arithmetic

2.1 Floating-Point Numbers

− Numbers must be stored in computers and arithmetic operations must be performed on these numbers.

− Most computers have two ways of storing numbers, in integer format and in floating-point format.

Floating-Point Representation in the Decimal system
: more intuitive

x = σ · x̄ · 10e

where σ = +1 or −1 (sign), e is an integer (exponent), and 1 ≤ x̄ < 10 (significant or mantissa).

For an example,

124.62 = +1 · (1.2462) · 102

with the sign σ = +1, the exponent e = 2, and the significant x̄ = 1.2462.

• The above example is a five-digit decimal floating-point arithmetic.

• The last digit may need to be changed by rounding.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

2.1 Floating-Point Numbers Error and Computer Arithmetic 8

Floating-Point Representation in the Binary system

x = σ · x̄ · 10e

where σ = +1 or −1 (sign), e is an integer (exponent), and (1)2 ≤ x̄ < (10)2 is a binary fraction.

For an example,

(11011.0111)2 = (1.10110111)2 · 2(100)2 with σ = +1, e = (100)2 = 4, and x̄ = (1.10110111)2.

• The allowable number of binary digits in x̄ is called the precision of the binary floating-point representation.

Single Precision Floating-Point Representation of x
has a precision of 24 binary digits and uses 4 bytes (32 bits):

x = σ · (1.b10 b11 · · · b32) · 2e (mantissa of decimal digits is 7 or 8) in normalized format x̄

with the exponent e limited by

−126 = −(1111110)2 ≤ e ≤ (1111111)2 = 127.

σ E x̄

b1 b2 b3 · · · b9 b10 b11 · · · b32

−126 ≤ e(:= E − 127) ≤ 127 with 0 ≤ E = (b2 b3 · · · b9)2 ≤ 255

• But, if E = (00 · · · 0)2 = 0, then e = −126 and x̄ = (0.b10 b11 · · · b32)2 with unnormalized format x̄

• if E = (11 · · · 1)2 = 255 and b10 = · · · = b32 = 0, then x̄ = ±∞,

• if E = (11 · · · 1)2 = 255 and ∼(
b10 = · · · = b32 = 0

)
then x̄ = NaN .

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

2.2 Accuracy of Floating-Point Representation Error and Computer Arithmetic 9

Double Precision Floating-Point Representation of x
has a precision of 53 binary digits and uses 8 bytes (64

bits):

x̄ = σ · (1.b13 b14 · · · b64) · 2e with −1022 ≤ e ≤ 1023 (mantissa of decimal digits is 15 or 16)

σ E(:= e + 1023) x̄

b1 b2 b3 · · · b12 b13 b14 · · · b64

2.2 Accuracy of Floating-Point Representation

Machine epsilon
is the difference between 1 and the next larger number that can be stored in the floating-point

format.

In single precision IEEE format, the next larger binary number is

1.00000000000000000000001

with the final binary digit 1 in position 23 to the right of the binary point.

The machine epsilon in single precision format is 2−23 ≈ 1.19−7.

In a similar fashion,

The machine epsilon in double precision format is 2−52 ≈ 2.22−16.

• In Matlab, it uses the double precision format so that the machine epsilon is eps ≈ 2.22−16.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

2.2 Accuracy of Floating-Point Representation Error and Computer Arithmetic 10

Largest integer M
that any integer x (0 ≤ x ≤ M) can be stored or represented exactly in floating-point form

:

• In the single precision format (24 binary digits) :

M = (1.00 · · · 0)2 · 224 = 224 = 16777216 ≈ 1.677.

• In the double precision format (53 binary digits) :

M = (1.00 · · · 0)2 · 253 = 253 ≈ 9.015.

2.2.1 Rounding and Chopping

Let the significant in the floating-point representation contain n binary digits.

If the number x has a significant x̄ that requires more than n binary bits, then it must be shortened when x is

stored in the computer.

• The simplest method is to simply truncate or chop x̄ to n binary digits ignoring the remaining digits.

• The second method is to round x̄ to n digits based on the size of the part of x̄ following digit n.

Denote the machine floating-point version of a number x by fl(x).

Then fl(x) can be written in the form

fl(x) = x · (1 + ε) with a small number ε.

Chopping : −2−n+1 ≤ ε ≤ 0

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

2.2 Accuracy of Floating-Point Representation Error and Computer Arithmetic 11

Rounding : −2−n ≤ ε ≤ 2−n : much better

• The IEEE standard is using the rounding :

Single precision : −2−24 ≤ ε ≤ 2−24

Double precision : −2−53 ≤ ε ≤ 2−53

2.2.2 Errors

Denote by xT the true value and xA an approximate value.

Error : Error(xA) = xT − xA

Relative Error : Rel(xA) =
xT − xA

xT

2.2.3 Sources of Error

Modelling Errors

Blunders and Mistakes

Physical Measurement Errors

Machine Representation and Arithmetic Errors

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

2.2 Accuracy of Floating-Point Representation Error and Computer Arithmetic 12

Mathematical Approximation Errors

2.2.4 Loss-of-Significance Errors

Compare the followings :

f(x) = x
(√

x + 1−√x
)

f(x) =
x√

x + 1 +
√

x

To avoid the loss of significant digits, use another formulation for f(x), avoiding the subtraction of nearly equal

quantities.

2.2.5 Noise in Function Evaluation

Using floating-point arithmetic with rounding or chopping, arithmetic operations (e.g., additions and multiplications)

cause errors in the evaluation of f(x), generally quite small ones.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

2.3 Underflow and Overflow Errors Error and Computer Arithmetic 13

2.3 Underflow and Overflow Errors

Underflow
: Attempts to create numbers that are too small lead to what are called underflow errors.

For example, consider an evaluation

f(x) = x10 for x near 0.

In the single precision arithmetic, the smallest nonzero positive number expressible in normalized floating-point

format (using the form of significant x̄ = (1.a1 · · · a23)2) is

m = (1.0 · · · 0)2 · 2−126 = 2−126 ≈ 1.18× 10−38.

Thus f(x) will be set to zero if

x10 < m ⇐⇒ |x| < 10
√

m ≈ 1.61× 10−4 ⇐⇒ −0.000161 < x < 0.000161

• If the use of unnormalized floating-point numbers (using the form of significant x̄ = (0.a1 · · · a23)2) allows to

represent the smaller number.

m = (0.0 · · · 1)2 · 2−126 = 2−149 ≈ 1.4× 10−45.

• Matlab uses the double precision unnormalized floating-point numbers.

(Using the form of significant x̄ = (0.a1 · · · a52)2)

m = (0.0 · · · 1)2 · 2−1022 = 2−1074 ≈ 4.94× 10−324 but 2−1075 = 0 = 10−324.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

2.3 Underflow and Overflow Errors Error and Computer Arithmetic 14

Overflow
: Attempts to create numbers that are too large lead to what are called overflow errors (more fatal

errors).

In the double precision arithmetic, the largest positive number expressible in floating-point format

M = (1.1 · · · 1)2 · 21023 = (1.1 · · · 1)2 · 252 · 2971

= (11 · · · 1)2 · 2971 = (253 − 1) · 2971 ≈ 1.80× 10308.

It is possible to eliminate an overflow error by just reformulating the expression being evaluated.

For example, with very large x and y (e.g., x = 10200 and y = 10150), compare the followings

z =
√

x2 + y2 and z =

{
|x|

√
1 + (y/x)2, 0 ≤ |y| ≤ |x|

|y|
√

1 + (x/y)2, 0 ≤ |x| ≤ |y|.

Summation
Add S from smallest to largest terms for the sum

S = a1 + a2 + · · ·+ an =
n∑

j=1

aj

A Loop Error
Keep away from successive repeated rounding errors in operations.

The following loop

for j = 1:n

x = a + j*h

end

is better than

x = a;

for j = 1:n

x = x + h

end

in general.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

RootFinding 15

3 RootFinding

Calculating the roots of an equation f(x) = 0

3.1 The Bisection Method

Suppose that f(x) is continuous on an interval a ≤ x ≤ b and that

f(a)f(b) < 0.

Algorithm (Bisection Method)
: To find a root to f(x) = 0

Input Arguments : function f , Initial guess a and b, Tolerance tol

Output Argument : approximated root c

1. Define c = (a + b)/2.

2. If b− c ≤ tol, then accept c as the root and stop.

3. If sign[f(b)] · sign[f(c)] ≤ 0, then set a = c.

Otherwise, set b = c.

4. Return to step 1.
0 0.5 1 1.5 2

−20

−10

0

10

20

30

40

50

60
Bisection Method

a b
c=(a+b)/2

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.1 The Bisection Method RootFinding 16

Error Bounds

Let an, bn and cn denote the nth computed values of a, b and c, respectively. Then

bn+1 − an+1 =
1

2
(bn − an) =

1

2n
(b− a), n ≥ 1

Since a root α is in either the interval [an, cn] or [cn, bn],

|α− cn| ≤ cn − an = bn − cn = 1
2(bn − an) = 1

2n (b− a). ⇐ linear convergence

Hence,

the iterates cn converge to α as n →∞.

How many iterations?

From

|α− cn| ≤ 1

2n
(b− a) ≤ ε,

we have

n ≥ log
(

b−a
ε

)

log 2
.

Advantages

• This method guarantees to converge.

• This method generally converges more slowly than most other methods (e.g., for smooth functions).

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.1 The Bisection Method RootFinding 17

Matlab Code
: (Bisection Method)

%---%

function [rt, err] = bisect(a,b,tol,maxitr)

%---%

% function [rt, err] = bisect(a,b,tol,maxitr)

if sign(f(a))*sign(f(b)) > 0

disp(’ f(a) and f(b) are of the same sign. Stop! ’); return

end

if a >= b

tmp = b; b = a; a = tmp; % Make a < b

end

c = (a+b)/2; itr = 0;

fprintf(’\n itr a b root f(c) error \n’)

while (b-c > tol) & (itr < maxitr)

itr = itr + 1;

if sign(f(b))*sign(f(c)) <= 0, a = c;

else b = c;

end

c = (a+b)/2;

fprintf(’ %4.0f %10.7f %10.7f %10.7f %12.4e %12.4e \n’, ...

itr, a, b, c, f(c), b-c);

end

rt = c; err = b - c;

%---%

function y = f(x)

y = x.^6 - x - 1;

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.2 Newton’s Method RootFinding 18

3.2 Newton’s Method

0.5 1 1.5 2 2.5 3 3.5 4
−20

−10

0

10

20

30

40
Newton Method

x
n

x
n+1

o

y=f(x)

tangent line

x
n+1

 = x
n
 − f(x

n
) / f’(x

n
)

Let y = p1(x) be the linear Taylor polynomial (the tangent line passing through (x0, f(x0)))

of y = f(x) at x = x0:

p1(x) = f(x0) + f ′(x0)(x− x0).

If x1 is a root of p1(x), then

x1 = x0 − f(x0)

f ′(x0)
.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.2 Newton’s Method RootFinding 19

Algorithm (Newton’s Iteration)
: To find a root of f(x)

With an initial guess x0

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2,

Error Bounds

Assume that f ∈ C2 in some interval about the root α and f ′(α) 6= 0.

Using Taylor’s theorem yields

0 = f(α) = f(xn) + (α− xn)f
′(xn) +

1

2
(α− xn)

2f ′′(cn)

with cn an unknown point between α and xn.

0 =
f(xn)

f ′(xn)
+ α− xn + (α− xn)

2 f ′′(cn)

2f ′(xn)

Using Newton’s iteration
f(xn)

f ′(xn)
= xn − xn+1,

0 = xn − xn+1 + α− xn + (α− xn)
2 f ′′(cn)

2f ′(xn)
or α− xn+1 = (α− xn)

2
[
− f ′′(cn)

2f ′(xn)

]
.

Thus, we have the second order error estimates (quadratic convergence):

M |α− xn| ≤ |M(α− xn−1)|2 = · · · = |M(α− x0)|2n

where

∣∣∣∣
f ′′(cn)

2f ′(xn)

∣∣∣∣ ≤ M.

• If the initial error is sufficiently small, then the error in the succeeding iterate will decrease very rapidly.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.2 Newton’s Method RootFinding 20

Example. Find a root f(x) = x6 − x− 1 with an initial guess x0 = 1.5 and then compare this with the results for

the bisection method.

Example (How to compute
1

b
without the division?).

Assume b > 0. Let f(x) = b− 1

x
. Then the root is α =

1

b
.

Using the derivative f ′(x) =
1

x2 , we have the Newton Method given by

xn+1 = xn −
b− 1

xn

1
x2

n

or xn+1 = xn(2− bxn).

This involves only multiplication and subtraction.

For the error, using α =
1

b
yields

Rel(xn) = [Rel(xn−1)]
2 = · · · = [Rel(x0)]

2n

(n ≥ 0).

The Newton iteration converges to α =
1

b
with the second order if and only if

|Rel(x0)| < 1 ⇐⇒ −1 <
1
b − x0

1
b

< 1 ⇐⇒ 0 < x0 <
2

b
.

If |Rel(x0)| = 0.1, then |Rel(xn)| = 10−2n

. (e.g., |Rel(x4)| = 10−16)

What is the first order error?

|en| = γ |en−1| = · · · = γn |e0| with some 0 < γ < 1.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.3 Secant Method RootFinding 21

3.3 Secant Method

0.5 1 1.5 2 2.5 3 3.5 4
−20

−10

0

10

20

30

40
Secant Method

x
n
 x

n+1

y=f(x)

x
n+1

 = x
n
 − f(x

n
) [(x

n
−x

n−1
) / (f(x

n
)−f(x

n−1
)]

o

x
n−1

secant line

o

Let y = p(x) be the linear polynomial (the secant line) passing through (x0, f(x0)) and (x1, f(x1)) :

p(x) = f(x1) +
f(x1)− f(x0)

x1 − x0
(x− x1).

If x2 is the root of p(x), then x2 = x1 − f(x1)
x1 − x0

f(x1 − f(x0)
.

Algorithm (Secant Method)
: To find a root of f(x)

With two initial guesses x0 and x1

xn+1 = xn − f(xn) · xn − xn−1

f(xn)− f(xn−1)
, n ≥ 1.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.3 Secant Method RootFinding 22

Lagrange Interpolation Polynomial Approximation

If f ∈ Cn+1 in some interval [a, b] and {xk}n
k=0 ⊂ [a, b], then there exists a number ξ(x) ∈ (a, b) such thaat

f(x) = Pn(x) +
f (n+1)(ξ)

(n + 1)!
(x− x0) · · · (x− xn)

with the Lagrange interpolation and the k-th Lagrange shape polynomial of degree n :

Pn(x) =
n∑

k=0

f(xk)Ln,k(x) and Ln,k(x) =
n∏

i=0,i 6=k

(x− xi)

(xk − xi)
=

(x− x0)

(xk − x0)
· · · (x− xn)

(xk − xn)
.

Error Bounds

Assume that f ∈ C2 in some interval about the root α and f ′(α) 6= 0.

Using Lagrange interpolation yields

f(x) =
x− xn−1

xn − xn−1
f(xn) +

x− xn

xn−1 − xn
f(xn−1) +

1

2
(x− xn−1)(x− xn)f

′′(ξ)

and then

0 = f(α) =
α− xn−1

xn − xn−1
f(xn) +

α− xn

xn−1 − xn
f(xn−1) +

1

2
(α− xn−1)(α− xn)f

′′(ξn)

with ξn an unknown point between min{α, xn−1, xn} and max{α, xn−1, xn}.
Also, we have from the Mean Value theorem that

f(xn−1) = f(xn)− (xn − xn−1)f
′(ζn)

with ζn an unknown point between xn−1 and xn.

From the last two equations, we have

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.3 Secant Method RootFinding 23

0 = f(xn) + (α− xn)f
′(ζn) +

1

2
(α− xn−1)(α− xn)f

′′(ξn)

or

0 =
f(xn)

f ′(ζn)
+ (α− xn) + (α− xn−1)(α− xn)

f ′′(ξn)

2f ′(ζn)
.

Now, using the secant iteration

xn+1 = xn − f(xn) · xn − xn−1

f(xn)− f(xn−1)
= xn − f(xn)

f ′(ζn)
,

0 = (α− xn+1) + (α− xn−1)(α− xn)
f ′′(ξn)

2f ′(ζn)

so that

α− xn+1 = (α− xn−1)(α− xn)

[−f ′′(ξn)

2f ′(ζn)

]
.

Let us consider the following identity

|en+1| = |en| · |en−1|M with M ≈
∣∣∣∣
−f ′′(α)

2f ′(α)

∣∣∣∣ ≈
∣∣∣∣
−f ′′(ξn)

2f ′(ζn)

∣∣∣∣ , ∀n.

Then

|en+1|
|en|γ = M ·

(|en|
|en−1|γ

)α

with γ =
1 +

√
5

2
, α =

1−√5

2
, (i.e., α + γ = 1, αγ = −1)

so that

Mβ |en+1|
|en|γ =

(
Mβ |en|

|en−1|γ
)α

=

(
Mβ |e1|

|e0|γ
)αn

with β =
1

α− 1
.

Taking the limit

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.3 Secant Method RootFinding 24

lim
n→∞

|en+1|
|en|γ = M−β lim

n→∞

(
Mβ |e1|

|e0|γ
)αn

= M−β = Mγ−1 because lim
n→∞

αn = 0,

we have the following approximate error estimates:

|en+1| = |α− xn+1| ≈ c |α− xn|γ = c |en|γ with γ =
1 +

√
5

2
≈ 1.62.

• If the initial error is sufficiently small, then the error in the succeeding iterate will decrease very rapidly.

• Newton method converges more rapidly than the secant method but it requires two function evaluations per

iteration, that of f(xn) and f ′(xn).

• And the secant method requires only one evaluation f(xn).

• For many problems with a complicated f ′(x), the secant method will probably be faster in actual running time

on a computer.

Example. Find a root f(x) = x6 − x− 1 with an initial guess x0 = 1.5 and then compare this with the results for

the Newton method.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.4 Fixed Point Iteration RootFinding 25

3.4 Fixed Point Iteration

To find a fixed-point α of g(x) : α = g(α)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

x

Fixed Point Iteration

y

x
0
 x

1
 x

2
 x

3

y = x

y = g(x) = 1 − x2/5

x
n+1

 = g(x
n
)

Algorithm (Fixed-Point Iteration)
: To find a root α of x = g(x)

With an initial guess x0

xn+1 = g(xn), n ≥ 0.

• If the sequence xn converges, then lim
n→∞

xn = α.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.4 Fixed Point Iteration RootFinding 26

Lemma 3.1. Let g(x) be a continuous function and suppose g satisfies

a ≤ g(x) ≤ for a ≤ x ≤ b.

Then, the equation x = g(x) has at least one solution α ∈ [a, b].

Theorem 3.2 (Contraction Mapping Theorem). Assume g(x) and g′(x) are continuous on [a, b], and assume

a ≤ g(x) ≤ b for a ≤ x ≤ b. Further assume that

λ := max
a≤x≤b

|g′(x)| < 1.

Then

1. There is a unique solution α of x = g(x) in the interval [a, b].

2. For any initial guess x0 ∈ [a, b], xn converges to α.

3. |α− xn| ≤ λn

1− λ
|x1 − x0|, (n ≥ 0).

4. lim
n→∞

α− xn+1

α− xn
= g′(α) so that α− xn+1 ≈ g′(α)(α− xn).

Corollary 3.3. Assume α ∈ (c, d). If g(x) and g′(x) are continuous in (c, d), and if

|g′(α)| < 1,

then, there is an interval [a, b] around α for which the conclusions of the above theorem are true.

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

3.4 Fixed Point Iteration RootFinding 27

Error Bounds

We have the linear convergence error bound :

|α− xn+1| = λ |α− xn| so that |α− xn| = λn |α− x0|.

Aitken Error Estimation
: to estimate the error

Denote by λ = g′(α). Then

α− xn ≈ λ(α− xn−1)

or

α ≈ xn +
λ

1− λ
(xn − xn−1)

Denote by

λn :=
xn − xn−1

xn−1 − xn−2
.

Then we have the Aitken’s extrapolation formula :

α− xn ≈ λn

1− λn
(xn − xn−1).

Numerical Analysis (Lecture Note) Byeong-Chun SHIN, CNU

	Taylor Polynomials
	The Taylor Polynomial
	The Error in Taylor's Polynomial

	Error and Computer Arithmetic
	Floating-Point Numbers
	Accuracy of Floating-Point Representation
	Rounding and Chopping
	Errors
	Sources of Error
	Loss-of-Significance Errors
	Noise in Function Evaluation

	Underflow and Overflow Errors

	RootFinding
	The Bisection Method
	Newton's Method
	Secant Method
	Fixed Point Iteration

